RESUMEN
Cystic fibrosis-related diabetes (CFRD), the most common comorbidity in cystic fibrosis (CF), leads to increased mortality by accelerating the decline in lung function. Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel ß subunit exhibit spontaneous CF-like lung disease, including airway mucus obstruction and chronic inflammation. Here, we established a chronic CFRD-like model using Scnn1b-Tg mice made diabetic by injection of streptozotocin (STZ). In Ussing chamber recordings of the trachea, Scnn1b-Tg mice exhibited larger amiloride-sensitive currents and forskolin-activated currents, without a difference in adenosine triphosphate (ATP)-activated currents compared with wild-type (WT) littermates. Both diabetic WT (WT-D) and diabetic Scnn1b-Tg (Scnn1b-Tg-D) mice on the same genetic background exhibited substantially elevated blood glucose at 8 wk; glucose levels also were elevated in bronchoalveolar lavage fluid (BALF). Bulk lung RNA-seq data showed significant differences between WT-D and Scnn1b-Tg-D mice. Neutrophil counts in BALF were substantially increased in Scnn1b-Tg-D lungs compared with controls (Scnn1b-Tg-con) and compared with WT-D lungs. Lung histology data showed enhanced parenchymal destruction, alveolar wall thickening, and neutrophilic infiltration in Scnn1b-Tg-D mice compared with WT-D mice, consistent with the development of a spontaneous lung infection. We intranasally administered Pseudomonas aeruginosa to induce lung infection in these mice for 24 h, which led to severe lung leukocytic infiltration and an increase in pro-inflammatory cytokine levels in the BALF. In summary, we established a chronic CFRD-like lung mouse model using the Scnn1b-Tg mice. The model can be used for future studies toward understanding the mechanisms underlying the lung pathophysiology associated with CFRD and developing novel therapeutics.NEW & NOTEWORTHY We established a chronic CFRD-like mouse model using the Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel ß subunit made diabetic by injection of streptozotocin. The results underscore the urgent need to develop novel therapeutics for CF lung disease.
Asunto(s)
Diabetes Mellitus Experimental , Canales Epiteliales de Sodio , Hiperglucemia , Pulmón , Ratones Transgénicos , Animales , Canales Epiteliales de Sodio/metabolismo , Canales Epiteliales de Sodio/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Ratones , Pulmón/patología , Pulmón/metabolismo , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Fibrosis Quística/patología , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Líquido del Lavado Bronquioalveolar , Masculino , Neutrófilos/metabolismoRESUMEN
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is a chloride ion channel, the dysfunction of which directly leads to the life-shortening disease CF. Extracellular loop 1 (ECL1) of CFTR contains several residues involved in stabilizing the open state of the channel; some, including D110, are sites of disease-associated gating mutations. Structures from related proteins suggest that the position of CFTR's extracellular loops may change considerably during gating. To better understand the roles of ECL1 in CFTR function, we utilized functional cysteine cross-linking to determine the effects of modulation of D110C-CFTR and of a double mutant of D110C with K892C in extracellular loop 4 (ECL4). The reducing agent DTT elicited a large potentiation of the macroscopic conductance of D110C/K892C-CFTR, likely due to breakage of a spontaneous disulfide bond between C110 and C892. DTT-reduced D110C/K892C-CFTR was rapidly inhibited by binding cadmium ions with high affinity, suggesting that these residues frequently come in close proximity in actively gating channels. Effects of DTT and cadmium on modulation of pore gating were demonstrated at the single-channel level. Finally, disulfided D110C/K892C-CFTR channels were found to be less sensitive than wild-type or DTT-treated D110C/K892C-CFTR channels to stimulation by IBMX, suggesting an impact of this conformational restriction on channel activation by phosphorylation. The results are best explained in the context of a model of CFTR gating wherein stable channel opening requires correct positioning of functional elements structurally influenced by ECL1.
Asunto(s)
Canales de Cloruro/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación del Canal Iónico/fisiología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Células Cultivadas , Cisteína/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp/métodos , Relación Estructura-ActividadRESUMEN
VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.g., human, mouse, and Xenopus (frog). In the present study, we combined this comparative molecular pharmacology approach with that of computer-aided drug discovery to identify and characterize new potentiators of CFTR and to explore possible mechanism of action. Our results demonstrate that 1) VX-770, NPPB, GlyH-101, P1, P2, and P3 all exhibited ortholog-specific behavior in that they potentiated hCFTR, mCFTR, and xCFTR with different efficacies; 2) P1, P2, and P3 potentiated hCFTR in excised macropatches in a manner dependent on the degree of PKA-mediated stimulation; 3) P1 and P2 did not have additive effects, suggesting that these compounds might share binding sites. Also 4) using a pharmacophore modeling approach, we identified three new potentiators (IOWH-032, OSSK-2, and OSSK-3) that have structures similar to GlyH-101 and that also exhibit ortholog-specific potentiation of CFTR. These could potentially serve as lead compounds for development of new drugs for the treatment of cystic fibrosis. The ortholog-specific behavior of these compounds suggest that a comparative pharmacology approach, using cross-ortholog chimeras, may be useful for identification of binding sites on human CFTR.
Asunto(s)
Agonistas de los Canales de Cloruro/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Secuencia de Aminoácidos , Aminofenoles/farmacología , Animales , Células Cultivadas , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Evaluación Preclínica de Medicamentos , Glicina/análogos & derivados , Glicina/farmacología , Hidrazinas/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Nitrobenzoatos/farmacología , Técnicas de Placa-Clamp , Quinolonas/farmacología , Eliminación de Secuencia , Xenopus laevisRESUMEN
Development of therapeutic molecules with clinical efficacy as modulators of defective CFTR includes efforts to identify potentiators that can overcome or repair the gating defect in mutant CFTR channels. This has taken a great leap forward with the identification of the potentiator VX-770, now available to patients as "Kalydeco." Other small molecules with different chemical structure also are capable of potentiating the activity of either wild-type or mutant CFTR, suggesting that there are features of the protein that may be targeted to achieve stimulation of channel activity by structurally diverse compounds. However, neither the mechanisms by which these compounds potentiate mutant CFTR nor the site(s) where these compounds bind have been identified. This knowledge gap partly reflects the lack of appropriate experimental models to provide clues toward the identification of binding sites. Here, we have compared the channel behavior and response to novel and known potentiators of human CFTR (hCFTR) and murine (mCFTR) expressed in Xenopus oocytes. Both hCFTR and mCFTR were blocked by GlyH-101 from the extracellular side, but mCFTR activity was increased with GlyH-101 applied directly to the cytoplasmic side. Similarly, glibenclamide only exhibited a blocking effect on hCFTR but both blocked and potentiated mCFTR in excised membrane patches and in intact oocytes. The clinically used CFTR potentiator VX-770 transiently increased hCFTR by â¼13% but potentiated mCFTR significantly more strongly. Our results suggest that mCFTR pharmacological sensitivities differ from hCFTR, which will provide a useful tool for identifying the binding sites and mechanism for these potentiators.
Asunto(s)
Aminofenoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/agonistas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Quinolonas/farmacología , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Hidrazinas/farmacología , Ratones , Oocitos/citología , Oocitos/metabolismo , Especificidad de la Especie , Xenopus laevisRESUMEN
Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg(352)-Asp(993) and Arg(347)-Asp(924), that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg(347) not only interacts with Asp(924) but also interacts with Asp(993). The tripartite interaction Arg(347)-Asp(924)-Asp(993) mainly contributes to maintaining a stable s2 open subconductance state. The Arg(352)-Asp(993) salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg(352) and Asp(993), channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle.
Asunto(s)
Arginina/metabolismo , Ácido Aspártico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación del Canal Iónico , Adenosina Trifosfato/farmacología , Algoritmos , Secuencia de Aminoácidos , Animales , Arginina/genética , Ácido Aspártico/genética , Sitios de Unión/genética , Cloruros/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Humanos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp , ARN Complementario/genética , Xenopus laevisRESUMEN
Introduction: ATP-binding cassette (ABC) transporters use the hydrolysis of ATP to power the active transport of molecules, but paradoxically the cystic fibrosis transmembrane regulator (CFTR, ABCC7) forms an ion channel. We previously showed that ATP-binding cassette subfamily C member 4 (ABCC4) is the closest mammalian paralog to CFTR, compared to other ABC transporters. In addition, Lamprey CFTR (Lp-CFTR) is the oldest known CFTR ortholog and has unique structural and functional features compared to human CFTR (hCFTR). The availability of these evolutionarily distant orthologs gives us the opportunity to study the changes in ATPase activity that may be related to their disparate functions. Methods: We utilized the baculovirus expression system with Sf9 insect cells and made use of the highly sensitive antimony-phosphomolybdate assay for testing the ATPase activity of human ABCC4 (hABCC4), Lp-CFTR, and hCFTR under similar experimental conditions. This assay measures the production of inorganic phosphate (Pi) in the nanomolar range. Results: Crude plasma membranes were purified, and protein concentration, determined semi-quantitatively, of hABCC4, Lp-CFTR, and hCFTR ranged from 0.01 to 0.36 µg/µL. No significant difference in expression level was found although hABCC4 trended toward the highest level. hABCC4 was activated by ATP with the equilibrium constant (Kd) 0.55 ± 0.28 mM (n = 8). Estimated maximum ATPase rate (Vmax) for hABCC4 was about 0.2 nmol/µg/min when the protein was activated with 1 mM ATP at 37°C (n = 7). Estimated maximum ATPase rate for PKA-phosphorylated Lp-CFTR reached about half of hCFTR levels in the same conditions. Vmax for both Lp-CFTR and hCFTR were significantly increased in high PKA conditions compared to low PKA conditions. Maximum intrinsic ATPase rate of hABCC4 in the absence of substrate was twice that of hCFTR when activated in 1 mM ATP. Conclusion: The findings here suggest that while both ABCC4 and hCFTR bear one consensus and one degenerate ATPase site, the hCFTR exhibited a reduced intrinsic ATPase activity. In addition, ATPase activity in the CFTR lineage increased from Lp-CFTR to hCFTR. Finally, the studies pave the way to purify hABCC4, Lp-CFTR, and hCFTR from Sf9 cells for their structural investigation, including by cryo-EM, and for studies of evolution in the ABC transporter superfamily.
RESUMEN
The study of many diseases is limited by the in vitro systems available. Cystic Fibrosis-Related Diabetes (CFRD), the main co-morbidity of Cystic Fibrosis (CF), is a perfect example. Cells in vivo experience glucose fluctuations after meals. In contrast, cells cultured in vitro are initially exposed to high glucose media. Glucose gets progressively depleted until the next media change days later, which is not physiologically relevant and could negatively impact the results of research studies. To better study the mechanisms driving CFRD pathophysiology, we developed a programmable and automated cell culture system (PACCS) capable of mimicking acute hyperglycemic episodes experienced by CFRD patients after meals. We adapted a commercially available perfusion system and performed 3D modeling to develop this system. Results show that PACCS can be successfully used to culture airway epithelial cells, both immortalized and primary cells. Further, CF cells responded differently to meal-like conditioning when compared to controls, suggesting impaired adaptative responses in CF cells. Overall, PACCS will allow us to better study CFRD pathophysiology, and it could be used for a wide range of other applications.
RESUMEN
Cystic fibrosis related diabetes (CFRD), the main co-morbidity in cystic fibrosis (CF), is associated with higher rates of lung function decline. We hypothesize that airway epithelial barrier function is impaired in CF and is further exacerbated under hyperglycemia, worsening pulmonary outcomes. Using 16HBE cells, we studied the effects of hyperglycemia in airway epithelial barrier function. Results show increased paracellular dye flux in CF cells in response to insulin under hyperglycemia. Gene expression experiments identified claudin-4 (CLDN4) as a key tight junction protein dysregulated in CF cells. CLDN4 protein localization by confocal microscopy showed that CLDN4 was tightly localized at tight junctions in WT cells, which did not change under hyperglycemia. ln contrast, CLDN4 was less well-localized in CF cells at normal glucose and localization was worsened under hyperglycemia. Treatment with highly effective modulator compounds (ETI) reversed this trend, and CFTR rescue was not affected by insulin or hyperglycemia. Bulk RNA sequencing showed differences in transcriptional responses in CF compared to WT cells under normal or high glucose, highlighting promising targets for future investigation. One of these targets is protein tyrosine phosphatase receptor type G (PTPRG), which has been previously found to play a role in defective Akt signaling and insulin resistance.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Células Epiteliales , Hiperglucemia , Humanos , Hiperglucemia/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/metabolismo , Línea Celular , Uniones Estrechas/metabolismo , Insulina/metabolismo , Claudina-4/metabolismo , Claudina-4/genética , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Glucosa/metabolismoRESUMEN
In this paper we present a transistor circuit model for cystic fibrosis transmembrane conductance regulator (CFTR) that seeks to map the functional form of CFTR both in wild type and mutants. The circuit architecture is configured so that the function, and as much as possible the form, faithfully represents what is known about CFTR from cryo-electron microscopy and molecular dynamics. The model is a mixed analog-digital topology with an AND gate receiving the input from two separate ATP-nucleotide-binding domain binding events. The analog portion of the circuit takes the output from the AND gate as its input. The input to the circuit model and its noise characteristics are extracted from single-channel patch-clamp experiments. The chloride current predicted by the model is then compared with single-channel patch-clamp recordings for wild-type CFTR. We also consider the patch-clamp recordings from CFTR with a G551D point mutation, a clinically relevant mutant that is responsive to therapeutic management. Our circuit model approach enables bioengineering approaches to CFTR and allows biophysicists to use efficient circuit simulation tools to analyze its behavior.
RESUMEN
Claudin family tight junction proteins form charge- and size-selective paracellular channels that regulate epithelial barrier function. In the gastrointestinal tract, barrier heterogeneity is attributed to differential claudin expression. Here, we show that claudin-23 (CLDN23) is enriched in luminal intestinal epithelial cells where it strengthens the epithelial barrier. Complementary approaches reveal that CLDN23 regulates paracellular ion and macromolecule permeability by associating with CLDN3 and CLDN4 and regulating their distribution in tight junctions. Computational modeling suggests that CLDN23 forms heteromeric and heterotypic complexes with CLDN3 and CLDN4 that have unique pore architecture and overall net charge. These computational simulation analyses further suggest that pore properties are interaction-dependent, since differently organized complexes with the same claudin stoichiometry form pores with unique architecture. Our findings provide insight into tight junction organization and propose a model whereby different claudins combine to form multiple distinct complexes that modify epithelial barrier function by altering tight junction structure.
Asunto(s)
Claudinas , Uniones Estrechas , Uniones Estrechas/metabolismo , Claudinas/genética , Claudinas/química , Simulación por Computador , Células Epiteliales/metabolismoRESUMEN
Previous studies suggested that four transmembrane domains 5, 6, 11, 12 make the greatest contribution to forming the pore of the CFTR chloride channel. We used excised, inside-out patches from oocytes expressing CFTR with alanine-scanning mutagenesis in amino acids in TM6 and TM12 to probe CFTR pore structure with four blockers: glibenclamide (Glyb), glipizide (Glip), tolbutamide (Tolb), and Meglitinide. Glyb and Glip blocked wildtype (WT)-CFTR in a voltage-, time-, and concentration-dependent manner. At V (M) = -120 mV with symmetrical 150 mM Cl(-) solution, fractional block of WT-CFTR by 50 µM Glyb and 200 µM Glip was 0.64 ± 0.03 (n = 7) and 0.48 ± 0.02 (n = 7), respectively. The major effects on block by Glyb and Glip were found with mutations at F337, S341, I344, M348, and V350 of TM6. Under similar conditions, fractional block of WT-CFTR by 300 µM Tolb was 0.40 ± 0.04. Unlike Glyb, Glip, and Meglitinide, block by Tolb lacked time-dependence (n = 7). We then tested the effects of alanine mutations in TM12 on block by Glyb and Glip; the major effects were found at N1138, T1142, V1147, N1148, S1149, S1150, I1151, and D1152. From these experiments, we infer that amino acids F337, S341, I344, M348, and V350 of TM6 face the pore when the channel is in the open state, while the amino acids of TM12 make less important contributions to pore function. These data also suggest that the region between F337 and S341 forms the narrow part of the CFTR pore.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Compuestos de Sulfonilurea/farmacología , Alanina/genética , Secuencia de Aminoácidos , Animales , Benzamidas/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Glipizida/farmacología , Gliburida/farmacología , Activación del Canal Iónico/efectos de los fármacos , Cinética , Mutagénesis , Oocitos , Técnicas de Placa-Clamp , Tolbutamida/farmacología , XenopusRESUMEN
The closing of the gated ion channel in the cystic fibrosis transmembrane conductance regulator can be categorized as nonpermissive to reopening, which involves the unbinding of ADP or ATP, or permissive, which does not. Identifying the type of closing is of interest as interactions with nucleotides can be affected in mutants or by introducing agonists. However, all closings are electrically silent and difficult to differentiate. For single-channel patch-clamp traces, we show that the type of the closing can be accurately determined by an inference algorithm implemented on a factor graph, which we demonstrate using both simulated and lab-obtained patch-clamp traces.
RESUMEN
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, an ancient family of proteins found in all phyla. In nearly all cases, ABC proteins are transporters that couple the hydrolysis of ATP to the transmembrane movement of substrate via an alternating access mechanism. In contrast, CFTR is best known for its activity as an ATP-dependent chloride channel. We asked why CFTR, which shares the domain architecture of ABC proteins that function as transporters, exhibits functional divergence. We compared CFTR protein sequences to those of other ABC transporters, which identified the ABCC4 proteins as the closest mammalian paralogs, and used statistical analysis of the CFTR-ABCC4 multiple sequence alignment to identify the specific domains and residues most likely to be involved in the evolutionary transition from transporter to channel activity. Among the residues identified as being involved in CFTR functional divergence, by virtue of being both CFTR-specific and conserved among all CFTR orthologs, was R352 in the sixth transmembrane helix (TM6). Patch-clamp experiments show that R352 interacts with D993 in TM9 to stabilize the open-channel state; D993 is absolutely conserved between CFTRs and ABCC4s. These data suggest that CFTR channel activity evolved, at least in part, by converting the conformational changes associated with binding and hydrolysis of ATP, as are found in true ABC Transporters, into an open permeation pathway by means of intraprotein interactions that stabilize the open state. This analysis sets the stage for understanding the evolutionary and functional relationships that make CFTR a unique ABC transporter protein.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Secuencia de Aminoácidos , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Evolución Molecular , Humanos , Activación del Canal Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Conformación Proteica , Alineación de SecuenciaRESUMEN
Ion channels play crucial roles in cell physiology, and are a major class of targets for clinically relevant pharmaceuticals. Because they carry ionic current, the function and pharmacology of ion channels can be studied using electrophysiological approaches that range in resolution from the single molecule to many millions of molecules. This chapter describes electrophysiological approaches for the study of one representative ion channel that is defective in a genetic disease, and that is the target of so-called highly effective modulator therapies now used in the clinic: the cystic fibrosis transmembrane conductance regulator (CFTR). Protocols are provided for studying CFTR expressed heterologously, for CFTR expressed in situ in airway epithelial cells, and for purified or partially purified CFTR protein reconstituted into planar lipid bilayers.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Oocitos/metabolismo , Xenopus/genética , Animales , Animales Modificados Genéticamente , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Humanos , Membrana Dobles de Lípidos/metabolismo , Mutación , Técnicas de Placa-Clamp , Transformación GenéticaRESUMEN
Altered cholesterol homeostasis in cystic fibrosis patients has been reported, although controversy remains. As a major membrane lipid component, cholesterol modulates the function of multiple ion channels by complicated mechanisms. However, whether cholesterol directly modulates cystic fibrosis transmembrane conductance regulator (CFTR) channel function remains unknown. To answer this question, we determined the effects of changing plasma membrane cholesterol levels on CFTR channel function utilizing polarized fischer rat thyroid (FRT) cells and primary human bronchial epithelial (HBE) cells. Treatment with methyl-ß-cyclodextrin (MßCD) significantly reduced total cholesterol content in FRT cells, which significantly decreased forskolin (FSK)-mediated activation of both wildtype (WT-) and P67L-CFTR. This effect was also seen in HBE cells expressing WT-CFTR. Cholesterol modification by cholesterol oxidase and cholesterol esterase also distinctly affected activation of CFTR by FSK. In addition, alteration of cholesterol increased the potency of VX-770, a clinically used potentiator of CFTR, when both WT- and P67L-CFTR channels were activated at low FSK concentrations; this likely reflects the apparent shift in the sensitivity of WT-CFTR to FSK after alteration of membrane cholesterol. These results demonstrate that changes in the plasma membrane cholesterol level significantly modulate CFTR channel function and consequently may affect sensitivity to clinical therapeutics in CF patients.
RESUMEN
Mutations in the bestrophin-1 (Best1) gene are linked to several kinds of macular degeneration in both humans and dogs. Although bestrophins have been shown clearly to be Cl(-) ion channels, it is controversial whether Cl(-) channel dysfunction can explain the diseases. It has been suggested that bestrophins are multifunctional proteins: they may regulate voltage-gated Ca(2+) channels in addition to functioning as Cl(-) channels. Here, we show that human Best1 gene (hBest1) differentially modulates Ca(V)1.3 (L-type) voltage-gated Ca(2+) channels through association with the Ca(V)beta subunit. In transfected human embryonic kidney 293 cells, hBest1 inhibited Ca(V)1.3. Inhibition of Ca(V)1.3 was not observed in the absence of the beta subunit. Also, the hBest1 C terminus binds to Ca(V)beta subunits, suggesting that the effect of hBest1 was mediated by the Ca(V)beta subunit. The region of hBest1 responsible for the effect was localized to a region (amino acids 330-370) in the cytoplasmic C terminus that contains a predicted src-homology-binding domain that is not present in other bestrophin subtypes. Mutation of Pro(330) and Pro(334) abolished the effects of hBest1 on Ca(V)1.3. The effect was specific to hBest1; it was not observed with mouse Best1 (mBest1), mBest2, or mBest3. Wild-type hBest1 and the disease-causing mutants R92S, G299R, and D312N inhibited Ca(V) currents the same amount, whereas the A146K and G222E mutants were less effective. We propose that hBest1 regulates Ca(V) channels by interacting with the Ca(V)beta subunit and altering channel availability. Our findings reveal a novel function of bestrophin in regulation of Ca(V) channels and suggest a possible mechanism for the role of hBest1 in macular degeneration.
Asunto(s)
Canales de Calcio Tipo L/fisiología , Canales de Cloruro/fisiología , Proteínas del Ojo/fisiología , Regulación de la Expresión Génica/fisiología , Dominios Homologos src/fisiología , Análisis de Varianza , Bestrofinas , Calcio/farmacología , Línea Celular Transformada , Canales de Cloruro/genética , Relación Dosis-Respuesta a Droga , Proteínas del Ojo/genética , Humanos , Inmunoprecipitación/métodos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Activación del Canal Iónico/efectos de la radiación , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Mutación/fisiología , Técnicas de Placa-Clamp/métodos , Prolina/genética , Unión Proteica , TransfecciónRESUMEN
VX-770 (ivacaftor) is approved for clinical use in CF patients bearing multiple CFTR mutations. VX-770 potentiated wildtype CFTR and several disease mutants expressed in oocytes in a manner modulated by PKA-mediated phosphorylation. Potentiation of some other mutants, including G551D-CFTR, was less dependent upon the level of phosphorylation, likely related to the severe gating defects in these mutants exhibited in part by a shift in PKA sensitivity to activation, possibly due to an electrostatic interaction of D551 with K1250. Phosphorylation-dependent potentiation of wildtype CFTR and other variants also was observed in epithelial cells. Hence, the efficacy of potentiators may be obscured by a ceiling effect when drug screening is performed under strongly phosphorylating conditions. These results should be considered in campaigns for CFTR potentiator discovery, and may enable the expansion of VX-770 to CF patients bearing ultra-orphan CFTR mutations.
Asunto(s)
Aminofenoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Quinolonas/farmacología , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Femenino , Humanos , Mutación , Oocitos , Fosforilación/efectos de los fármacos , Ratas , Xenopus laevisRESUMEN
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily that has uniquely evolved to function as a chloride channel. It binds and hydrolyzes ATP at its nucleotide binding domains to form a pore providing a diffusive pathway within its transmembrane domains. CFTR is the only known protein from the ABC superfamily with channel activity, and its dysfunction causes the disease cystic fibrosis. While much is known about the functional aspects of CFTR, significant gaps remain, such as the structure-function relationship underlying signaling of ATP binding. In the present work, we refined an existing homology model using an intermediate-resolution (9 Å) published cryo-electron microscopy map. The newly derived models have been simulated in equilibrium molecular dynamics simulations for a total of 2.5 µs in multiple ATP-occupancy states. Putative conformational movements connecting ATP binding with pore formation are elucidated and quantified. Additionally, new interdomain interactions between E543, K968, and K1292 have been identified and confirmed experimentally; these interactions may be relevant for signaling ATP binding and hydrolysis to the transmembrane domains and induction of pore opening.
Asunto(s)
Adenosina Trifosfato/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Moleculares , Transducción de Señal , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Difusión , Humanos , Espacio Intracelular/metabolismo , Conformación Proteica , Homología de Secuencia de AminoácidoRESUMEN
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel central to the development of secretory diarrhea and cystic fibrosis. The oldest CFTR ortholog identified is from dogfish shark, which retains similar structural and functional characteristics to the mammalian protein, thereby highlighting CFTR's critical role in regulating epithelial ion transport in vertebrates. However, the identification of an early CFTR ortholog with altered structure or function would provide critical insight into the evolution of epithelial anion transport. Here, we describe the earliest known CFTR, expressed in sea lamprey (Petromyzon marinus), with unique structural features, altered kinetics of activation and sensitivity to inhibition, and altered single-channel conductance compared to human CFTR. Our data provide the earliest evolutionary evidence of CFTR, offering insight regarding changes in gene and protein structure that underpin evolution from transporter to anion channel. Importantly, these data provide a unique platform to enhance our understanding of vertebrate phylogeny over a critical period of evolutionary expansion.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Evolución Molecular , Humanos , LampreasRESUMEN
CaBP4 is a calmodulin-like neuronal calcium-binding protein that is crucial for the development and/or maintenance of the cone and rod photoreceptor synapse. Previously, we showed that CaBP4 directly regulates Ca(v)1 L-type Ca2+ channels, which are essential for normal photoreceptor synaptic transmission. Here, we show that the function of CaBP4 is regulated by phosphorylation. CaBP4 is phosphorylated by protein kinase C zeta (PKCzeta) at serine 37 both in vitro and in the retina and colocalizes with PKCzeta in photoreceptors. CaBP4 phosphorylation is greater in light-adapted than dark-adapted mouse retinas. In electrophysiological recordings of cells transfected with Ca(v)1.3 and CaBP4, mutation of the serine 37 to alanine abolished the effect of CaBP4 in prolonging the Ca2+ current through Ca(v)1.3 channel, whereas inactivating mutations in the CaBP4 Ca2+-binding sites strengthened Ca(v)1.3 modulation. These findings demonstrate how light-stimulated changes in CaBP4 phosphorylation and Ca2+ binding may regulate presynaptic Ca2+ signals in photoreceptors.