Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 612(7941): 679-684, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36543955

RESUMEN

Perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency exceeding 20% have been achieved in both green and red wavelengths1-5; however, the performance of blue-emitting PeLEDs lags behind6,7. Ultrasmall CsPbBr3 quantum dots are promising candidates with which to realize efficient and stable blue PeLEDs, although it has proven challenging to synthesize a monodispersed population of ultrasmall CsPbBr3 quantum dots, and difficult to retain their solution-phase properties when casting into solid films8. Here we report the direct synthesis-on-substrate of films of suitably coupled, monodispersed, ultrasmall perovskite QDs. We develop ligand structures that enable control over the quantum dots' size, monodispersity and coupling during film-based synthesis. A head group (the side with higher electrostatic potential) on the ligand provides steric hindrance that suppresses the formation of layered perovskites. The tail (the side with lower electrostatic potential) is modified using halide substitution to increase the surface binding affinity, constraining resulting grains to sizes within the quantum confinement regime. The approach achieves high monodispersity (full-width at half-maximum = 23 nm with emission centred at 478 nm) united with strong coupling. We report as a result blue PeLEDs with an external quantum efficiency of 18% at 480 nm and 10% at 465 nm, to our knowledge the highest reported among perovskite blue LEDs by a factor of 1.5 and 2, respectively6,7.

2.
Nano Lett ; 22(3): 1338-1344, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35049298

RESUMEN

Quasi-2D perovskites, composed of self-organized quantum well structures, are emerging as gain materials for laser applications. Here we investigate the influence of domain distribution on the laser emission of CsPbCl1.5Br1.5-based quasi-2D perovskites. The use of 2,2-diphenylethylammonium bromide (DPEABr) as a ligand enables the formation of quasi-2D film with a large-n-dominated narrow domain distribution. Due to the reduced content of small-n domains, the incomplete energy transfer from small-n to large-n domains can be greatly addressed. Moreover, the photoinduced carriers can be concentrated on most of the large-n domains to reduce the local carrier density, thereby suppressing the Auger recombination. By controlling the domain distribution, we achieve blue amplified spontaneous emission and single-mode vertical-cavity surface-emitting lasing with low thresholds of 6.5 and 9.2 µJ cm-2, respectively. This work provides a guideline to design the domain distribution to realize low-threshold multicolor perovskite lasers.

3.
Angew Chem Int Ed Engl ; 62(21): e202302184, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36866612

RESUMEN

Mixed-halide perovskites are considered the most straightforward candidate to realize blue perovskite light-emitting diodes (PeLEDs). However, they suffer severe halide migration, leading to spectral instability, which is particularly exaggerated in high chloride alloying perovskites. Here, we demonstrate energy barrier of halide migration can be tuned by manipulating the degree of local lattice distortion (LLD). Enlarging the LLD degree to a suitable level can increase the halide migration energy barrier. We herein report an "A-site" cation engineering to tune the LLD degree to an optimal level. DFT simulation and experimental data confirm that LLD manipulation suppresses the halide migration in perovskites. Conclusively, mixed-halide blue PeLEDs with a champion EQE of 14.2 % at 475 nm have been achieved. Moreover, the devices exhibit excellent operational spectral stability (T50 of 72 min), representing one of the most efficient and stable pure-blue PeLEDs reported yet.

4.
Small ; 18(3): e2104623, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34837464

RESUMEN

Fused-ring electron donors boost the efficiency of organic solar cells (OSCs), but they suffer from high cost and low yield for their large synthetic complexity (SC > 30%). Herein, the authors develop a series of simple non-fused-ring electron donors, PF1 and PF2, which alternately consist of furan-3-carboxylate and 2,2'-bithiophene. Note that PF1 and PF2 present very small SC of 9.7% for their inexpensive raw materials, facile synthesis, and high synthetic yield. Compared to their all-thiophene-backbone counterpart PT-E, two new polymers feature larger conjugated plane, resulting in higher hole mobility for them, especially a value up to ≈10-4 cm2 V-1 ·s for PF2 with longer alkyl side chain. Meanwhile, PF1 and PF2 exhibit larger dielectric constant and deeper electronic energy level versus PT-E. Benefiting from the better physicochemical properties, the efficiencies of PF1- and PF2-based devices are improved by ≈16.7% and ≈71.3% relative to that PT-E-based devices, respectively. Furthermore, the optimized PF2-based devices with introducing PC71 BM as the third component deliver a higher efficiency of 12.40%. The work not only indicates that furan-3-carboxylate is a simple yet efficient building block for constructing non-fused-ring polymers but also provides a promising electron donor PF2 for the low-cost production of OSCs.


Asunto(s)
Energía Solar , Electrones , Polímeros/química , Luz Solar , Tiofenos/química
5.
Angew Chem Int Ed Engl ; 59(16): 6442-6450, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-31994286

RESUMEN

Chiral quasi-2D perovskite single crystals (SCs) were investigated for their circular polarized light (CPL) detecting capability. Quasi-2D chiral perovskites, [(R)-ß-MPA]2 MAPb2 I7 ((R)-ß-MPA=(R)-(+)-ß-methylphenethylamine, MA=methylammonium), have intrinsic chirality and the capability to distinguish different polarization states of CPL photons. Corresponding quasi-2D SCs CPL photodetector exhibit excellent detection performance. In particular, our device responsivity is almost one order of magnitude higher than the reported 2D perovskite CPL detectors to date. The crystallization dynamics of the film were modulated to facilitate its carrier transport. Parallel oriented perovskite films with a homogeneous energy landscape is crucial to maximize the carrier collection efficiency. The photodetector also exhibits superior mechanical flexibility and durability, representing a promising candidate for sensitive and robust CPL photodetectors.

6.
Adv Mater ; 36(9): e2306373, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37703387

RESUMEN

Organic solar cells (OSCs) exhibit complex charge dynamics, which are closely correlated with the dielectric constant (ɛr ) of photovoltaic materials. In this work, a series of novel conjugated copolymers based on benzo[1,2-b:4,5-b']difuran (BDF) and benzotriazole (BTz) is designed and synthesized, which differ by the nature of π-bridge from one another. The PBDF-TF-BTz with asymmetric furan and thiophene π-bridge demonstrates a larger ɛr of 4.22 than PBDF-dT-BTz with symmetric thiophene π-bridge (3.15) and PBDF-dF-BTz with symmetric furan π-bridge (3.90). The PBDF-TF-BTz also offers more favorable molecular packing and appropriate miscibility with non-fullerene acceptor Y6 than its counterparts. The corresponding PBDF-TF-BTz:Y6 OSCs display efficient exciton dissociation, fast charge transport and collection, and reduced charge recombination, eventually leading to a power conversion efficiency of 17.01%. When introducing a fullerene derivative (PCBO-12) as a third component, the PBDF-TF-BTz:Y6:PCBO-12 OSCs yield a remarkable FF of 80.11% with a high efficiency of 18.10%, the highest value among all reported BDF-polymer-based OSCs. This work provides an effective approach to developing high-permittivity photovoltaic materials, showcasing PBDF-TF-BTz as a promising polymer donor for constructing high-performance OSCs.

7.
Adv Mater ; 35(39): e2304094, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343137

RESUMEN

Mixed-halide perovskites show tunable emission wavelength across the visible-light range, with optimum control of the light color. However, color stability remains limited due to the notorious halide segregation under illumination or an electric field. Here, a versatile path toward high-quality mixed-halide perovskites with high emission properties and resistance to halide segregation is presented. Through systematic in and ex situ characterizations, key features for this advancement are proposed: a slowed and controllable crystallization process can promote achievement of halide homogeneity, which in turn ensures thermodynamic stability; meanwhile, downsizing perovskite nanoparticle to nanometer-scale dimensions can enhance their resistance to external stimuli, strengthening the phase stability. Leveraging this strategy, devices are developed based on CsPbCl1.5 Br1.5 perovskite that achieves a champion external quantum efficiency (EQE) of 9.8% at 464 nm, making it one of the most efficient deep-blue mixed-halide perovskite light-emitting diodes (PeLEDs) to date. Particularly, the device demonstrates excellent spectral stability, maintaining a constant emission profile and position for over 60 min of continuous operation. The versatility of this approach with CsPbBr1.5 I1.5 PeLEDs is further showcased, achieving an impressive EQE of 12.7% at 576 nm.

8.
ACS Appl Mater Interfaces ; 14(34): 38963-38971, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35979625

RESUMEN

Carbon-based all-inorganic CsPbIxBr3-x perovskite solar cells offer high stability against heat and humidity and a suitable band gap for tandem and semitransparent photovoltaics. In CsPbIxBr3-x perovskite films, the defects at grain boundaries (GBs) cause charge trapping, reducing the efficiency of the cell. Electronic deactivation of GB has been a conventional strategy to suppress the trapping, but at the cost of charge carrier transport through the boundaries. Here, we turn the GBs into benign charge transport pathways with the aid of bipolar charge transport semiconductors, namely, Ti3C2TX (MXene) and Spiro-OMeTAD, respectively. Thanks to the synergistic effects of both n- and p-type transport media, the charge transport is improved and balanced at the GBs. As a result, the cells achieve an efficiency of 12.7%, the highest among all low-temperature-processed carbon-based inorganic perovskite solar cells. Benign GBs also lead to enhanced light and aging stabilities. Our work demonstrates a proof-of-concept strategy of benign electronic modulation of GBs for solution-processed perovskite solar cells.

9.
Nat Commun ; 12(1): 336, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436618

RESUMEN

Rapid Auger recombination represents an important challenge faced by quasi-2D perovskites, which induces resulting perovskite light-emitting diodes' (PeLEDs) efficiency roll-off. In principle, Auger recombination rate is proportional to materials' exciton binding energy (Eb). Thus, Auger recombination can be suppressed by reducing the corresponding materials' Eb. Here, a polar molecule, p-fluorophenethylammonium, is employed to generate quasi-2D perovskites with reduced Eb. Recombination kinetics reveal the Auger recombination rate does decrease to one-order-of magnitude lower compared to its PEA+ analogues. After effective passivation, nonradiative recombination is greatly suppressed, which enables resulting films to exhibit outstanding photoluminescence quantum yields in a broad range of excitation density. We herein demonstrate the very efficient PeLEDs with a peak external quantum efficiency of 20.36%. More importantly, devices exhibit a record luminance of 82,480 cd m-2 due to the suppressed efficiency roll-off, which represent one of the brightest visible PeLEDs yet.

10.
Nat Commun ; 12(1): 2207, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850141

RESUMEN

Serious performance decline arose for perovskite light-emitting diodes (PeLEDs) once the active area was enlarged. Here we investigate the failure mechanism of the widespread active film fabrication method; and ascribe severe phase-segregation to be the reason. We thereby introduce L-Norvaline to construct a COO--coordinated intermediate phase with low formation enthalpy. The new intermediate phase changes the crystallization pathway, thereby suppressing the phase-segregation. Accordingly, high-quality large-area quasi-2D films with desirable properties are obtained. Based on this, we further rationally adjusted films' recombination kinetics. We reported a series of highly-efficient green quasi-2D PeLEDs with active areas of 9.0 cm2. The peak EQE of 16.4% is achieved in = 3, represent the most efficient large-area PeLEDs yet. Meanwhile, high brightness device with luminance up to 9.1 × 104 cd m-2 has achieved in = 10 film.

11.
J Phys Chem Lett ; 11(14): 5734-5740, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32598158

RESUMEN

Quasi-two-dimensional (quasi-2D) Ruddlesden-Popper perovskites (RPPs) have been reported recently as laser media. The carrier dynamics of lasing in quasi-2D RPP films is still controversial. This work presents the amplified spontaneous emission (ASE) at room temperature based on the solution-processed quasi-2D (PEA)2Csn-1PbnBr3n+1 (⟨n⟩ = 3-5) thin films. Transient absorption spectroscopy was conducted to demonstrate the accumulation of excitons and population inversion for ASE caused by the energy transfer process along cascade quantum wells. The competition between the ASE and Auger recombination processes was observed via systematic and quantitative studies on the carrier dynamics. It is found that the contribution of Auger recombination is reduced by decreasing the temperature or adjusting the domain distribution of the quasi-2D RPP films, in order to achieve lower thresholds. This work re-emphasizes the importance of Auger recombination control for achieving low-threshold electrically or continuous-wave driven lasers and deepens the fundamental understanding of charge carrier dynamics of lasing in quasi-2D perovskite films.

12.
Nat Commun ; 11(1): 1672, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246083

RESUMEN

Reduced-dimensional (quasi-2D) perovskite materials are widely applied for perovskite photovoltaics due to their remarkable environmental stability. However, their device performance still lags far behind traditional three dimensional perovskites, particularly high open circuit voltage (Voc) loss. Here, inhomogeneous energy landscape is pointed out to be the sole reason, which introduces extra energy loss, creates band tail states and inhibits minority carrier transport. We thus propose to form homogeneous energy landscape to overcome the problem. A synergistic approach is conceived, by taking advantage of material structure and crystallization kinetic engineering. Accordingly, with the help of density functional theory guided material design, (aminomethyl) piperidinium quasi-2D perovskites are selected. The lowest energy distribution and homogeneous energy landscape are achieved through carefully regulating their crystallization kinetics. We conclude that homogeneous energy landscape significantly reduces the Shockley-Read-Hall recombination and suppresses the quasi-Fermi level splitting, which is crucial to achieve high Voc.

13.
ACS Nano ; 14(4): 4475-4486, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167288

RESUMEN

Great successes have been achieved in developing perovskite light-emitting devices (LEDs) with blue, green, red, and near-infrared emissions. However, as key optoelectronic devices, yellow-colored perovskite LEDs remain challenging, mainly due to the inevitable halide separation in mixed halide perovskites under high bias, causing undesired color change of devices. In addition to this color-missing problem, the intrinsic toxicity and poor stability of conventional lead-halide perovskites also restrict their practical applications. We herein report the fabrication of stable yellow LEDs based on a ternary copper halide CsCu2I3, addressing the color instability and toxicity issues facing current perovskite yellow LED's compromise. Joint experiment-theory characterizations indicate that the yellow electroluminescence originates from the broadband emission of self-trapped excitons centered at 550 nm as well as the comparable and reasonably low carrier effective masses favorable for charge transport. With a maximum luminance of 47.5 cd/m2 and an external quantum efficiency of 0.17%, the fabricated yellow LEDs exhibit a long half-lifetime of 5.2 h at 25 °C and still function properly at 60 °C with a half-lifetime of 2.2 h, which benefits from the superior resistance of CsCu2I3 to heat, moisture, and oxidation in ambient environmental conditions. The results obtained promise the copper halides with broadband light emission as an environment-friendly and stable yellow emitter for the LEDs compatible with practical applications.

14.
Nat Commun ; 10(1): 1868, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015430

RESUMEN

Device performance and in particular device stability for blue perovskite light-emitting diodes (PeLEDs) remain considerable challenges for the whole community. In this manuscript, we conceive an approach by tuning the 'A-site' cation composition of perovskites to develop blue-emitters. We herein report a Rubidium-Cesium alloyed, quasi-two-dimensional perovskite and demonstrate its great potential for pure-blue PeLED applications. Composition engineering and in-situ passivation are conducted to further improve the material's emission property and stabilities. Consequently, we get a prominent film photoluminescence quantum yield of around 82% under low excitation density. Encouraged by these findings, we finally achieve a spectra-stable blue PeLED with the peak external quantum efficiency of 1.35% and a half-lifetime of 14.5 min, representing the most efficient and stable pure-blue PeLEDs reported so far. The strategy is also demonstrated to be able to generate efficient perovskite blue emitters and PeLEDs in the whole blue spectral region (from 454 to 492 nm).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA