Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(9): e2220468120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802426

RESUMEN

The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product. However, the identity of the PKSE product that is converted to the enediyne core or anthraquinone moiety has not been established. Here, we report the utilization of recombinant E. coli coexpressing various combinations of genes that encode a PKSE and a thioesterase (TE) from either 9- or 10-membered enediyne biosynthetic gene clusters to chemically complement ΔPKSE mutant strains of the producers of dynemicins and tiancimycins. Additionally, 13C-labeling experiments were performed to track the fate of the PKSE/TE product in the ΔPKSE mutants. These studies reveal that 1,3,5,7,9,11,13-pentadecaheptaene is the nascent, discrete product of the PKSE/TE that is converted to the enediyne core. Furthermore, a second molecule of 1,3,5,7,9,11,13-pentadecaheptaene is demonstrated to serve as the precursor of the anthraquinone moiety. The results establish a unified biosynthetic paradigm for AFEs, solidify an unprecedented biosynthetic logic for aromatic polyketides, and have implications for the biosynthesis of not only AFEs but all enediynes.


Asunto(s)
Productos Biológicos , Escherichia coli , Escherichia coli/genética , Antraquinonas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Enediinos/química , Antibióticos Antineoplásicos
2.
Genes Dev ; 31(9): 889-903, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28546511

RESUMEN

A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors (TFs) across the genome, but how these lncRNA-TF gene duplexes regulate tissue development and homeostasis is unclear. We identified a feedback loop within the NANCI (Nkx2.1-associated noncoding intergenic RNA)-Nkx2.1 gene duplex that is essential for buffering Nkx2.1 expression, lung epithelial cell identity, and tissue homeostasis. Within this locus, Nkx2.1 directly inhibits NANCI, while NANCI acts in cis to promote Nkx2.1 transcription. Although loss of NANCI alone does not adversely affect lung development, concurrent heterozygous mutations in both NANCI and Nkx2.1 leads to persistent Nkx2.1 deficiency and reprogramming of lung epithelial cells to a posterior endoderm fate. This disruption in the NANCI-Nkx2.1 gene duplex results in a defective perinatal innate immune response, tissue damage, and progressive degeneration of the adult lung. These data point to a mechanism in which lncRNAs act as rheostats within lncRNA-TF gene duplex loci that buffer TF expression, thereby maintaining tissue-specific cellular identity during development and postnatal homeostasis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Homeostasis , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Animales , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Humanos , Inmunidad Celular , Pulmón/inmunología , Ratones , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo
3.
J Am Chem Soc ; 146(23): 16268-16280, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38810110

RESUMEN

Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologues of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in the assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.


Asunto(s)
Pirroles , Pirroles/metabolismo , Pirroles/química , Familia de Multigenes , Streptomyces/enzimología , Streptomyces/metabolismo , Streptomyces/genética
4.
Small ; : e2402481, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953414

RESUMEN

Superhydrophobic surfaces are of great interest because of their remarkable properties. Due to its maximal hardness and chemical inertness, diamond film has great potential in fabricating robust superhydrophobic surfaces. In the present study, an oxygen-terminated polycrystalline boron-doped diamond (O-PBDD) superhydrophobic surface with micro/nano-hierarchical porous structures is developed. The preparation method is very simple, requiring only sputtering and dewetting procedures. The former involves sputtering gold and copper particles onto the hydrogen-terminated polycrystalline boron-doped diamond (H-PBDD) to form gold/copper films, whereas the latter involves placing the samples in an atmospheric tube furnace to form hierarchical pores. By controlling the etching parameters, the wettability of the O-PBDD surface can be adjusted from hydrophilic to superhydrophobic, which is significantly different to the normal hydrophilicity feature of O-termination diamonds. The water contact angle of the obtained O-PBDD surface can reach 165 ± 5°, which is higher than the superhydrophobic diamond surfaces that are reported in the literature. In addition, the O-PBDD surface exhibits excellent durability; it can maintain satisfactory superhydrophobicity even after high-pressure, high-temperature, and sandpaper friction tests. This work provides a new research direction for fabricating robust superhydrophobic materials with diamond film.

5.
Plant Physiol ; 191(2): 1002-1016, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417279

RESUMEN

Excess light causes severe photodamage to photosystem II (PSII) where the primary charge separation for electron transfer takes place. Dissection of mechanisms underlying the PSII maintenance and repair cycle in green algae promotes the usage of genetic engineering and synthetic biology to improve photosynthesis and biomass production. In this study, we systematically analyzed the high light (HL) responsive immunophilin genes in Chlamydomonas (Chlamydomonas reinhardtii) and identified one chloroplast lumen-localized immunophilin, CYN28, as an essential player in HL tolerance. Lack of CYN28 caused HL hypersensitivity, severely reduced accumulation of PSII supercomplexes and compromised PSII repair in cyn28. The thylakoid FtsH (filamentation temperature-sensitive H) is an essential AAA family metalloprotease involved in the degradation of photodamaged D1 during the PSII repair cycle and was identified as one potential target of CYN28. In the cyn28 mutant, the thylakoid FtsH undergoes inefficient turnover under HL conditions. The CYN28-FtsH1/2 interaction relies on the FtsH N-terminal proline residues and is strengthened particularly under HL. Further analyses demonstrated CYN28 displays peptidyl-prolyl isomerase (PPIase) activity, which is necessary for its physiological function. Taken together, we propose that immunophilin CYN28 participates in PSII maintenance and regulates the homeostasis of FtsH under HL stress via its PPIase activity.


Asunto(s)
Chlamydomonas , Tilacoides , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Péptido Hidrolasas/metabolismo , Inmunofilinas/análisis , Inmunofilinas/metabolismo , Chlamydomonas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Luz
6.
Bioorg Chem ; 150: 107535, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38865859

RESUMEN

Phenylarsine oxide (PAO) is a known environmental pollutant and skin keratinocytes are most seriously affected. Baicalin (BCN) was reported to have antioxidant and anti-inflammatory effects, but its protective effect against PAO toxicity is unknown. This study aimed at exploring whether baicalin can reverse the toxicity of human epidermal keratinocytes that are subjected to PAO exposure and underlying mechanisms. In silico analysis from a publicly accessible HaCaT cell transcriptome dataset exposed to chronic Arsenic showed significant differential expression of several genes, including the genes related to DNA replication. Later, we performed in vitro experiments, in which HaCaT cells were exposed to PAO (500 nM) in the existence of BCN (10-50 µM). Treatment of PAO alone induces the JNK, p38 and caspase-3 activation, which were engaged in the apoptosis induction, while the activity of AKT was significantly inhibited, which was engaged in the suppression of apoptosis. PAO suppressed SIRT3 expression and induced intracellular reactive oxygen species (ROS), causing a marked reduce in cell viability and apoptosis. However, BCN treatment restored the PAO-induced suppression of SIRT3 and AKT expression, reduced intracellular ROS generation, and markedly suppressed both caspase-3 activation and apoptosis induction. However, the protective effect of BCN was significantly attenuated after pretreatment with nicotinamide, an inhibitor of SIRT3. These findings indicate that BCN protects against cell death induced by PAO via inhibiting excessive intracellular ROS generation via restoring SIRT3 activity and reactivating downstream AKT pathway. In this study, we firstly shown that BCN is an efficient drug to prevent PAO-induced skin cytotoxicity, and these findings need to be confirmed by in vivo and clinical investigations.

7.
Chem Biodivers ; 21(5): e202400448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38498112

RESUMEN

Citronella and Nutmeg are two common spices used for seasoning and medicinal purposes, both of which have significant economic value. This study aimed to investigate whether Citronella essential oil and Nutmeg essential oil (NEO) can ameliorate monosodium urate (MSU)-induced gouty arthritis in rats and the potential mechanisms. The results showed that CEO and NEO reduced swelling and redness at joint sites, inhibited neutrophil infiltration, and limited proinflammatory mediator secretion in mice with MSU-induced gouty arthritis. Based on the results of network pharmacology, molecular docking, and western blotting, CEO and NEO may exert anti-gouty arthritis effects by reducing the expression of reactive oxygen species and oxidative stress and downregulating the phosphorylation of the PI3K/AKT/mTOR signaling pathway, thereby inhibiting the production of the NLRP3 inflammasome and inhibiting the production of inflammatory cytokines. Therefore, these two essential oils show potential for use as adjuvant treatments for gouty arthritis in specific aromatherapy products or food seasonings.


Asunto(s)
Artritis Gotosa , Proteína con Dominio Pirina 3 de la Familia NLR , Aceites Volátiles , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Aceites Volátiles/farmacología , Aceites Volátiles/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Ratas , Masculino , Myristica/química , Ácido Úrico/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley
8.
J Obstet Gynaecol ; 44(1): 2347430, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38835234

RESUMEN

BACKGROUND: At present, the discovery of new biomarkers is of great significance for the early diagnosis, treatment and prognosis assessment of ovarian cancer. Previous findings indicated that aberrant G-protein-coupled receptor 176 (GPR176) expression might contribute to tumorigenesis and subsequent progression. However, the expression of GPR176 and the molecular mechanisms in ovarian cancer had not been investigated. METHODS: GPR176 expression was compared with clinicopathological features of ovarian cancer using immunohistochemical and bioinformatics analyses. GPR176-related genes and pathways were analysed using bioinformatics analysis. Additionally, the effects of GPR176 on ovarian cancer cell phenotypes were investigated. RESULTS: GPR176 expression positively correlated with elder age, clinicopathological staging, tumour residual status, and unfavourable survival of ovarian cancer, but negatively with purity loss, infiltration of B cells, and CD8+ T cells. Gene Set Enrichment Analysis showed that differential expression of GPR176 was involved in focal adhesion, ECM-receptor interaction, cell adhesion molecules and so on. STRING and Cytoscape were used to determine the top 10 nodes. Kyoto Encyclopaedia of Genes and Genomes analysis indicated that GPR176-related genes were involved in the ECM structural constituent and organisation and so on. GPR176 overexpression promoted the proliferation, anti-apoptosis, anti-pyroptosis, migration and invasion of ovarian cancer cells with overexpression of N-cadherin, Zeb1, Snail, Twist1, and under-expression of gasdermin D, caspase 1, and E-cadherin. CONCLUSION: GPR176 might be involved in the progression of ovarian cancer. It might be used as a biomarker to indicate the aggressive behaviour and poor prognosis of ovarian cancer and a target of genetic therapy.


Ovarian cancer is a gynecological cancer with high mortality. Due to the limited screening tests and treatments available, most ovarian cancer patients are diagnosed at a late stage and the prognosis is poor. The addition of new cancer diagnostic biomarkers and new intervention targets may improve quality of life and survival for patients with ovarian cancer. Previous studies have revealed the aberrant GPR176 expression might contribute to tumorigenesis and subsequent progression in many other tumours. In our study, GPR176 was found to promote the proliferation, anti-apoptosis, anti-pyroptosis, migration and invasion, EMT, and weakening the cellular adhesion of ovarian cancer cells, and involved in the Bcl-2/Bax or the PI3K/Akt/mTOR pathway. Therefore, abnormal expression of GPR176 might be served as a biomarker for aggressive behaviour and poor prognosis of ovarian cancer and a target for gene therapy.


Asunto(s)
Neoplasias Ováricas , Receptores Acoplados a Proteínas G , Humanos , Femenino , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Persona de Mediana Edad , Terapia Genética/métodos , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional , Pronóstico , Proliferación Celular/genética , Carcinogénesis/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
9.
J Am Chem Soc ; 145(1): 725-731, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36550680

RESUMEN

We have successfully constructed a chiral linear [3]catenane stereoselectively by coordination-driven self-assembly using a ditopic monodentate ligand containing l-valine residues with a binuclear half-sandwich organometallic rhodium(III) unit. Furthermore, by increasing the steric hindrance of the amino acid residues in the ligand, a chiral [2]catenane was obtained, which can be regarded as the factor catenane of the chiral linear [3]catenane from a topological viewpoint. Notably, the resulting molecular catenanes all exhibit complex coconformational mechanical helical chirality and planar chirality ascribed to the point chirality of the ligands. Linear [3]catenanes and [2]catenanes with the opposite chirality can be obtained by using ligands containing the corresponding d-amino acid residues, which have been confirmed by single-crystal X-ray diffraction, NMR, mass spectrometry, and circular dichroism spectroscopy.


Asunto(s)
Catenanos , Catenanos/química , Ligandos , Antracenos , Cristalografía por Rayos X
10.
Transgenic Res ; 32(4): 305-319, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37247123

RESUMEN

JC polyoma virus (JCPyV), a ubiquitous polyoma virus that commonly infects people, is identified as the etiologic factor for progressive multifocal leukoencephalopathy and has been closely linked to various human cancers. Transgenic mice of CAG-loxp-Laz-loxp T antigen were established. T-antigen expression was specifically activated in gastroenterological target cells with a LacZ deletion using a cre-loxp system. Gastric poorly-differentiated carcinoma was observed in T antigen-activated mice using K19-cre (stem-like cells) and PGC-cre (chief cells), but not Atp4b-cre (parietal cells) or Capn8-cre (pit cells) mice. Spontaneous hepatocellular and colorectal cancers developed in Alb-cre (hepatocytes)/T antigen and villin-cre (intestinal cells)/T antigen transgenic mice respectively. Gastric, colorectal, and breast cancers were observed in PGC-cre/T antigen mice. Pancreatic insulinoma and ductal adenocarcinoma, gastric adenoma, and duodenal cancer were detected in Pdx1-cre/T antigen mice. Alternative splicing of T antigen mRNA occurred in all target organs of these transgenic mice. Our findings suggest that JCPyV T antigen might contribute to gastroenterological carcinogenesis with respect to cell specificity. Such spontaneous tumor models provide good tools for investigating the oncogenic roles of T antigen in cancers of the digestive system.


Asunto(s)
Poliomavirus , Neoplasias Gástricas , Ratones , Humanos , Animales , Antígenos Virales de Tumores/genética , Ratones Transgénicos , Células Epiteliales/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
11.
Langmuir ; 39(36): 12754-12761, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37646437

RESUMEN

Surface roughness is one of the significant factors affecting liquid-vapor phase change heat transfer. This paper explores the effect of surface roughness on bubble nucleation and boiling heat transfer, as well as the microscopic mechanism, by constructing random rough surfaces using molecular dynamics (MD) simulation. Bubbles randomly nucleate on a flat surface and tend to nucleate in pits on rough surfaces. The pits on the random rough surface gather more argon atoms than the protrusions, forming low potential energy regions on the surface, thus providing stable nucleation sites for bubbles. As the surface roughness increases, bubble generation, merging, and growth are advanced. In addition, rough surfaces offer a larger effective heat transfer area for the heat transfer process, increase the strength of solid-liquid coupling, and obtain smaller solid-liquid interaction energy. The critical heat flux (CHF) value positively correlates with surface roughness. As the roughness increases, the surface superheat at the onset of CHF decreases accordingly. This paper provides new insights into the mechanism of heat transfer enhancement on rough surfaces and surface design in thermal management.

12.
Cell Biol Toxicol ; 39(6): 2881-2898, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37097350

RESUMEN

RNA-binding proteins (RBPs), long non-coding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs) were found to play crucial regulatory roles in ischemic injury. Based on GEO databases and our experimental results, we selected Dcp2, lncRNA-RNCR3, Dkc1, and Snora62 and Foxh1 as research candidates. We found that expression levels of Dcp2, RNCR3, Dkc1, Snora62, and Foxh1 were upregulated in oxygen glucose deprivation-treated HT22 cells and hippocampal tissues subject to chronic cerebral ischemia (CCI). Silencing of Dcp2, RNCR3, Dkc1, Snora62, and Foxh1 all inhibited apoptosis of oxygen glucose deprivation-treated HT22 cells. Moreover, Dcp2 promoted RNCR3 expression by increasing its stability. Importantly, RNCR3 may act as a molecular skeleton to bind to Dkc1 and recruit Dck1 to promote snoRNP assembly. Snora62 was responsible for pseudouridylation at 28S rRNA U3507 and U3509 sites. Pseudouridylation levels of 28S rRNA were reduced after knockdown of Snora62. Decreased pseudouridylation levels inhibited the translational activity of its downstream target, Foxh1. Our study further confirmed that Foxh1 transcriptionally promoted the expression of Bax and Fam162a. Notably, experiments in vivo showed that Dcp2 knockdown combined with RNCR3 knockdown and Snora62 knockdown resulted in an anti-apoptosis effect. In conclusion, this study suggests that the axis Dcp2/RNCR3/Dkc1/Snora621 is important for the regulation of neuronal apoptosis induced by CCI.


Asunto(s)
Isquemia Encefálica , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Ribosómico 28S , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Apoptosis/genética , Glucosa , Oxígeno , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
13.
Drug Dev Res ; 84(7): 1537-1552, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37571819

RESUMEN

FAM64A is a mitogen-induced regulator of the metaphase and anaphase transition. Here, we found that FAM64A messenger RNA (mRNA) and protein expression levels were higher in gastric cancer tissue than in normal mucosa (p < .05). FAM64A methylation was negatively correlated with FAM64A mRNA expression (p < .05). The differentially expressed genes of FAM64A were mainly involved in digestion, potassium transporting or exchanging ATPase, contractile fibers, endopeptidase, and pancreatic secretion (p < .05). The FAM64A-related genes were principally categorized into ubiquitin-mediated proteolysis, cell cycle, chromosome segregation and mitosis, microtubule binding and organization, metabolism of amino acids, cytokine receptors, lipid droplet, central nervous system, and collagen trimer (p < .05). FAM64A protein expression was lower in normal gastric mucosa than intestinal metaplasia, adenoma, and primary cancer (p < .05), negatively correlated with older age, T stage, lymphatic and venous invasion, tumor, node, metastasis stage, and dedifferentiation (p < .05), and associated with a favorable overall survival of gastric cancer patients. FAM64A overexpression promoted proliferation, antiapoptosis, migration, invasion, and epithelial-mesenchymal transition via the EGFR/Akt/mTOR/NF-κB, while the opposite effect was observed for FAM64A knockdown. FAM64A also induced chemoresistance directly or indirectly through lipid droplet formation via ING5. These results suggested that upregulation of FAM64A expression might induce aggressive phenotypes, leading to gastric carcinogenesis and its subsequent progression. Thus, FAM64A could be regarded as a prognosis biomarker and a target for gene therapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Resistencia a Antineoplásicos/genética , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Regulación Neoplásica de la Expresión Génica , Biomarcadores , Proliferación Celular/genética , ARN Mensajero , Terapia Genética , Línea Celular Tumoral , Movimiento Celular , Pronóstico
14.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614235

RESUMEN

Given the high global prevalence and mortality associated with gastric cancer, and its known causal link with Helicobacter pylori infection, it is important to have a biomarker to identify malignant transformation at early stages. Previously, we, and others, have reported that H. pylori-induced epigenetic changes could mediate carcinogenic transformation of the gastric cells. Also, CXCL1 secreted by gastric cancer cells was reported as a key diagnostic and prognostic biomarker for the pathogenic progression of gastric cancer. In this study, for the first time, we aimed to investigate the role of H. pylori-induced DNA methylation-based epigenetic regulation of CXCL1. In silico analysis of publicly available datasets and in vitro experiments were performed. Our results showed that CXCL1 is highly expressed in both gastric cancer tissues and gastric cancer cells infected with H. pylori. Further, we showed and confirmed that H. pylori-mediated overexpression of CXCL1 is due to hypomethylation of its promoter region. Since epigenetic events such as DNA methylation happen early in the sequence; H. pylori-induced CXCL1 hypomethylation could likely be detected at an early stage of gastric cancer development. Epigenetic modifications, such as CXCL1 hypomethylation, are reversible and could potentially be a therapeutic target using demethylation drugs.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Metilación de ADN , Neoplasias Gástricas/patología , Helicobacter pylori/genética , Epigénesis Genética , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/patología , Mucosa Gástrica/metabolismo , Regiones Promotoras Genéticas , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Biomarcadores/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo
15.
Plant J ; 108(5): 1456-1472, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587339

RESUMEN

The architecture and genetic diversity of mitogenome (mtDNA) are largely unknown in cultivated soybean (Glycine max), which is domesticated from the wild progenitor, Glycine soja, 5000 years ago. Here, we de novo assembled the mitogenome of the cultivar 'Williams 82' (Wm82_mtDNA) with Illumina PE300 deep sequencing data, and verified it with polymerase chain reaction (PCR) and Southern blot analyses. Wm82_mtDNA maps as two autonomous circular chromosomes (370 871-bp Chr-m1 and 62 661-bp Chr-m2). Its structure is extensively divergent from that of the mono-chromosomal mitogenome reported in the landrace 'Aiganhuang' (AGH_mtDNA). Synteny analysis showed that the structural variations (SVs) between two genomes are mainly attributed to ectopic and illegitimate recombination. Moreover, Wm82_mtDNA and AGH_mtDNA each possess six and four specific regions, which are absent in their counterparts and likely result from differential sequence-loss events. Mitogenome SV was further studied in 39 wild and 182 cultivated soybean accessions distributed world-widely with PCR/Southern analyses or a comparable in silico analysis. The results classified both wild and cultivated soybeans into five cytoplasmic groups, named as GSa-GSe and G1-G5; 'Williams 82' and 'Aiganhuang' belong to G1 and G5, respectively. Notably, except for members in GSe and G5, all accessions carry a bi-chromosomal mitogenome with a common Chr-m2. Phylogenetic analyses based on mtDNA structures and chloroplast gene sequences both inferred that G1-G3, representing >90% of cultigens, likely inherited cytoplasm from the ancestor of domestic soybean, while G4 and G5 likely inherited cytoplasm from wild soybeans carrying GSa- and GSe-like cytoplasm through interspecific hybridization, offering new insights into soybean cultivation history.


Asunto(s)
Genoma Mitocondrial/genética , Genoma de Planta/genética , Glycine max/genética , Evolución Biológica , ADN Mitocondrial/genética , ADN de Plantas/genética , Domesticación , Hibridación Genética , Filogenia
16.
J Am Chem Soc ; 144(5): 2379-2386, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080385

RESUMEN

Herein, we have successfully achieved the stereoselective synthesis of two chiral radial [5]catenanes in a single step through the self-assembly of bidentate ligands containing l-alanine residues and binuclear half-sandwich organometallic rhodium(III)/iridium(III) clips. Remarkably, these two chiral radial [5]catenanes exhibit complex stereochemical structures as revealed by single-crystal X-ray diffraction. The eight binuclear units and eight bidentate ligands in their solid-state structures all exhibit a single planar chirality, and the interlocking between molecular macrocycles exhibits a single co-conformational mechanical helical chirality. This indicates that the introduction of the point chirality in the ligands enables the efficient stereoselective construction of mechanically interlocked molecules. Furthermore, by using ligands containing d-alanine residues, radial [5]catenanes with the opposite planar chirality and opposite co-conformational mechanical helical chirality have also been obtained.

17.
Cancer ; 128(22): 3951-3958, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36181667

RESUMEN

BACKGROUND: Imatinib treatment often produces various adverse reactions in patients with chronic myeloid leukemia (CML), and increasing patients are pursuing dose optimization. In this study, the authors aimed to explore imatinib dose optimization based on therapeutic drug monitoring (TDM) in CML patients. METHODS: The relationship between imatinib concentration and clinical response and adverse reactions was evaluated, then the dose-reduction data in 110 Chinese CML patients was also explored. RESULTS: Patients with a major molecular response (MMR) had higher imatinib plasma concentration compared with those not achieving MMR (1473.70 ± 419.13 vs. 985.8 ± 213.32 ng/ml) when receiving 400 mg daily. Imatinib concentration >1000 ng/ml predicted improved event-free survival and failure-free survival. In addition, imatinib concentration was significantly correlated with leukopenia or neutropenia, diarrhea, edema, and rash. Patients receiving imatinib concentration >1685 ng/ml were more susceptible to diarrhea and those with levels >1575 ng/ml were more susceptible to periorbital and limb edema. Thirty-nine (35.5%) patients underwent low-dose therapy and seven (6.4%) patients received discontinuation therapy. Patients with a higher imatinib concentration were more likely to maintain MMR or deep molecular response after dose reduction. No significant difference in molecular relapse-free survival rate was observed between the low-dose and standard-dose groups over 1 year and 2 years. Furthermore, most adverse reactions significantly improved after dose reduction. CONCLUSIONS: Imatinib concentration was closely associated with clinical response and adverse reactions, suggesting that dose optimization based on TDM might achieve beneficial clinical outcomes. Dose reduction based on TDM is feasible and safe for patients exhibiting optimal response, which could improve adverse reactions.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide de Fase Crónica , Humanos , Mesilato de Imatinib/uso terapéutico , Monitoreo de Drogas , Pirimidinas/uso terapéutico , Benzamidas , Piperazinas/uso terapéutico , Antineoplásicos/uso terapéutico , Leucemia Mieloide de Fase Crónica/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Diarrea/inducido químicamente , China
18.
Cancer Cell Int ; 22(1): 385, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476503

RESUMEN

OBJECTIVE: N6-methyladenosine (m6A) RNA methylation is involved in governing the mechanism of tumor progression. We aimed to excavate the biological role and mechanism of the m6A methyltransferase METTL3 in cholangiocarcinoma (CCA). METHODS: METTL3 expression was determined by database and tissue microarray analyses. The role of METTL3 in CCA was explored by loss- and gain-of-function experiments. The m6A target of METTL3 was detected by RNA sequencing. The role of AKR1B10 in CCA was explored, and the association between METTL3 and AKR1B10 was confirmed by rescue experiments. RESULT: METTL3 expression was upregulated in CCA tissue, and higher METTL3 expression was implicated in poor prognoses in CCA patients. Overexpression of METTL3 facilitated proliferation, migration, invasion, glucose uptake, and lactate production in CCA cells, whereas knockdown of METTL3 had the opposite effects. We further found that METTL3 deficiency inhibited CCA tumor growth in vivo. RNA sequencing and MeRIP-qPCR confirmed that METTL3 enhanced AKR1B10 expression and m6A modification levels. Furthermore, METTL3 directly binds with AKR1B10 at an m6A modification site. A CCA tissue microarray showed that AKR1B10 expression was upregulated in CCA tissue and that silencing AKR1B10 suppressed the malignant phenotype mentioned above in CCA. Notably, knockdown of AKR1B10 rescued the tumor-promoting effects induced by METTL3 overexpression. CONCLUSION: Elevated METTL3 expression promotes tumor growth and glycolysis in CCA through m6A modification of AKR1B10, indicating that METTL3 is a potential target for blocking glycolysis for application in CCA therapy.

19.
Nat Chem Biol ; 16(8): 904-911, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32483377

RESUMEN

Several nucleoside antibiotics are structurally characterized by a 5″-amino-5″-deoxyribose (ADR) appended via a glycosidic bond to a high-carbon sugar nucleoside (5'S,6'S)-5'-C-glycyluridine (GlyU). GlyU is further modified with an N-alkylamine linker, the biosynthetic origin of which has yet to be established. By using a combination of feeding experiments with isotopically labeled precursors and characterization of recombinant proteins from multiple pathways, the biosynthetic mechanism for N-alkylamine installation for ADR-GlyU-containing nucleoside antibiotics has been uncovered. The data reveal S-adenosyl-L-methionine (AdoMet) as the direct precursor of the N-alkylamine, but, unlike conventional AdoMet- or decarboxylated AdoMet-dependent alkyltransferases, the reaction is catalyzed by a pyridoxal-5'-phosphate-dependent aminobutyryltransferase (ABTase) using a stepwise γ-replacement mechanism that couples γ-elimination of AdoMet with aza-γ-addition onto the disaccharide alkyl acceptor. In addition to using a conceptually different strategy for AdoMet-dependent alkylation, the newly discovered ABTases require a phosphorylated disaccharide alkyl acceptor, revealing a cryptic intermediate in the biosynthetic pathway.


Asunto(s)
Antibacterianos/química , Fosfato de Piridoxal/química , Alquilación/fisiología , Antibacterianos/farmacología , Fenómenos Bioquímicos , Metionina/metabolismo , Nucleósidos/química , Fosfatos , Fosforilación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química
20.
Phys Chem Chem Phys ; 24(9): 5546-5554, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174847

RESUMEN

Graphene has been extensively applied in composite materials due to its high thermal conductivity. Multi-layered graphene has great potential in the construction of a continuous filler network but is restricted by the high interfacial thermal resistance between adjacent graphene layers. This paper investigates the effects of the overlapping area and interlayer sp3 bonding of partially overlapped bilayer graphene on the interfacial thermal resistance using molecular dynamic simulations. The results show the linear relationship between the interfacial thermal resistance and the overlapping area. Then, identical vacancy defects of the same plane coordinates were added to each of the two graphene sheets, and it was found that the presence of an armchair edge restricted the formation of interface sp3 bonding to some extent, while the zigzag edge did not. However, their similar bond length and the phonon density of state of bonded atoms in the models with different edges indicated their similar effects on the heat transfer. Therefore, the thermal resistance of all single sp3 bonds in different models could be approximated to 14.3 × 10-9 m2 KW-1. A formula is proposed to describe the inverse relationship between the number of sp3 bonds and the interfacial thermal resistance. Finally, the vacancy defect on the upper graphene sheet was moved to stagger the two vacancies. The length of sp3 bonds was changed slightly due to the staggered arrangement, and the interfacial thermal resistance was found to be positively correlated with the bond length. This allows valuable interfacial heat-transfer properties of the partially overlapped bilayer graphene to contribute to the thermal management of the 3D filler network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA