Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766764

RESUMEN

The study of the rolling tyre is a problem framed in the general context of nonlinear elasticity. The dynamics of the related phenomena is still an open topic, even though few examples and models of tyres can be found in the technical literature. The interest in the dissipation effects associated with the rolling motion is justified by their importance in fuel-saving and in the context of an eco-friendly design. However, a general lack of knowledge characterizes the phenomenon, since not even direct experience on the rolling tyre can reveal the insights of the correlated different dissipation effects, as the friction between the rubber and the road, the contact kinematics and dynamics, the tyre hysteretic behaviour and the grip. A new technology, based on fibre Bragg grating strain sensors and conceived within the OPTYRE project, is illustrated for the specific investigation of the tyre dissipation related phenomena. The remarkable power of this wireless optical system stands in the chance of directly accessing the behaviour of the inner tyre in terms of stresses when a real-condition-rolling is experimentally observed. The ad hoc developed tyre model has allowed the identification of the instant grip conditions, of the area of the contact patch and allows the estimation of the instant dissipated power, which is the focus of this paper.

2.
Phys Rev E ; 106(5-1): 054136, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559429

RESUMEN

When studying the collective motion of biological groups, a useful theoretical framework is that of ferromagnetic systems, in which the alignment interactions are a surrogate of the effective imitation among the individuals. In this context, the experimental discovery of scale-free correlations of speed fluctuations in starling flocks poses a challenge to common statistical physics wisdom, as in the ordered phase of standard ferromagnetic models with O(n) symmetry, the modulus of the order parameter has finite correlation length. To make sense of this anomaly, a ferromagnetic theory has been proposed, where the bare confining potential has zero second derivative (i.e., it is marginal) along the modulus of the order parameter. The marginal model exhibits a zero-temperature critical point, where the modulus correlation length diverges, hence allowing us to boost both correlation and collective order by simply reducing the temperature. Here, we derive an effective field theory describing the marginal model close to the T=0 critical point and calculate the renormalization group equations at one loop within a momentum shell approach. We discover a nontrivial scenario, as the cubic and quartic vertices do not vanish in the infrared limit, while the coupling constants effectively regulating the exponents ν and η have upper critical dimension d_{c}=2, so in three dimensions the critical exponents acquire their free values, ν=1/2 and η=0. This theoretical scenario is verified by a Monte Carlo study of the modulus susceptibility in three dimensions, where the standard finite-size scaling relations have to be adapted to the case of d>d_{c}. The numerical data fully confirm our theoretical results.

3.
Nat Commun ; 13(1): 2315, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538068

RESUMEN

Speed fluctuations of individual birds in natural flocks are moderate, due to the aerodynamic and biomechanical constraints of flight. Yet the spatial correlations of such fluctuations are scale-free, namely they have a range as wide as the entire group, a property linked to the capacity of the system to collectively respond to external perturbations. Scale-free correlations and moderate fluctuations set conflicting constraints on the mechanism controlling the speed of each agent, as the factors boosting correlation amplify fluctuations, and vice versa. Here, using a statistical field theory approach, we suggest that a marginal speed confinement that ignores small deviations from the natural reference value while ferociously suppressing larger speed fluctuations, is able to reconcile scale-free correlations with biologically acceptable group's speed. We validate our theoretical predictions by comparing them with field experimental data on starling flocks with group sizes spanning an unprecedented interval of over two orders of magnitude.


Asunto(s)
Vuelo Animal , Estorninos , Animales , Reuniones Masivas
4.
J Acoust Soc Am ; 126(3): 1111-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19739724

RESUMEN

Contact between sliding bodies can cause vibrations leading to instability. The problem of squeal due to high frequency noise from brake systems is due to unstable vibrations generated at the contact interface between the pad and disk. Squeal noise is characterized by extreme unpredictability due to large uncertainties on the values of parameters of the system. Parametrical complex eigenvalue analysis is a common tool used to predict squeal instability. In this paper a substructured linear finite element model of a simplified brake system is studied. A parametrical analysis is focused on a test case and compared to experimental results. The analysis is developed as a function of the parameters assumed to be the most influential but also the most uncertain: friction coefficient and the parameters driving the dynamics of the system. The uncertainties are accounted for by considering parameters such as random variables. A Monte Carlo simulation and a probabilistic technique are performed simultaneously to study the probability of squeal occurrence. Finally, a reduced model based on the transfer function calculated at the contact is developed to perform the analysis with reduced computational effort.

5.
J Endod ; 38(10): 1408-11, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22980189

RESUMEN

INTRODUCTION: The purpose of this study was to evaluate cyclic fatigue fracture resistance of engine-driven nickel-titanium (K3XF) instruments under reciprocating movement in various angles. METHODS: Fifty K3XF size 40 taper 0.06 nickel-titanium instruments were divided randomly into 5 groups of 10 each. All instruments were subjected to cyclic fatigue tests. Instruments in groups 1-4 were tested by using different reciprocating motions, whereas instruments of group 5 (control group) were used in continuous rotation. All instruments were rotated or reciprocated until fracture occurred. Time to fracture was recorded, and data were statistically analyzed by using one-way analysis of variance, followed by Tukey honestly significant difference test for comparison between different groups. RESULTS: All reciprocating groups (groups 1-4) showed a significant increase in time to failure when compared with group 5 (continuous rotation) (P < .05). Mean time was significantly higher in group 1, followed by group 2. No significant difference was found between groups 3 and 4 (P = .251). Increasing the clockwise angle of reciprocation and consequently increasing the angle of progression for each reciprocation cycle reduced the resistance to cyclic fatigue. CONCLUSIONS: Movement kinematics (reciprocating movements in various angles) had a significant influence on the cyclic fatigue life of the tested nickel-titanium instruments.


Asunto(s)
Aleaciones Dentales , Instrumentos Dentales , Análisis del Estrés Dental , Preparación del Conducto Radicular/instrumentación , Fenómenos Biomecánicos , Análisis del Estrés Dental/instrumentación , Diseño de Equipo , Falla de Equipo , Movimiento (Física) , Níquel , Distribución Aleatoria , Rotación , Titanio , Torsión Mecánica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA