Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Res ; 102(1): e25250, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37840458

RESUMEN

Sensory over-responsivity (SOR) is a prevalent cross-diagnostic condition that is often associated with anxiety. The biological mechanisms underlying the co-occurrence of SOR and anxiety symptoms are not well understood, despite having important implications for targeted intervention. We therefore investigated the unique associations of SOR and anxiety symptoms with physiological and neural responses to sensory stimulation for youth with anxiety disorders (ANX), autism spectrum disorder (ASD), or typical development (TD). Age/IQ-matched youth aged 8-18 years (22 ANX; 30 ASD; 22 TD) experienced mildly aversive tactile and auditory stimuli during functional magnetic resonance imaging and then during skin conductance response (SCR) and heart rate (HR) measurements. Caregivers reported on participants' SOR and anxiety symptoms. ASD/ANX youth had elevated SOR and anxiety symptoms compared to TD. ASD/ANX youth showed similar, heightened brain responses to sensory stimulation compared to TD youth, but brain responses were more highly related to SOR symptoms in ASD youth and to anxiety symptoms in ANX youth. Across ASD/ANX youth, anxiety symptoms uniquely related to greater SCR whereas SOR uniquely related to greater HR responses to sensory stimulation. Behavioral and neurobiological over-responsivity to sensory stimulation was shared across diagnostic groups. However, findings support SOR and anxiety as distinct symptoms with unique biological mechanisms, and with different relationships to neural over-reactivity dependent on diagnostic group. Results indicate a need for targeted treatment approaches.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Adolescente , Ansiedad , Trastornos de Ansiedad , Corteza Prefrontal , Imagen por Resonancia Magnética
2.
Dev Psychopathol ; 35(4): 1968-1981, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36523255

RESUMEN

Early caregiving adversity (ECA) is associated with elevated psychological symptomatology. While neurobehavioral ECA research has focused on socioemotional and cognitive development, ECA may also increase risk for "low-level" sensory processing challenges. However, no prior work has compared how diverse ECA exposures differentially relate to sensory processing, or, critically, how this might influence psychological outcomes. We examined sensory processing challenges in 183 8-17-year-old youth with and without histories of institutional (orphanage) or foster caregiving, with a particular focus on sensory over-responsivity (SOR), a pattern of intensified responses to sensory stimuli that may negatively impact mental health. We further tested whether sensory processing challenges are linked to elevated internalizing and externalizing symptoms common in ECA-exposed youth. Relative to nonadopted comparison youth, both groups of ECA-exposed youth had elevated sensory processing challenges, including SOR, and also had heightened internalizing and externalizing symptoms. Additionally, we found significant indirect effects of ECA on internalizing and externalizing symptoms through both general sensory processing challenges and SOR, covarying for age and sex assigned at birth. These findings suggest multiple forms of ECA confer risk for sensory processing challenges that may contribute to mental health outcomes, and motivate continuing examination of these symptoms, with possible long-term implications for screening and treatment following ECA.


Asunto(s)
Cognición , Salud Mental , Adolescente , Recién Nacido , Humanos , Percepción
3.
J Child Psychol Psychiatry ; 63(9): 1002-1016, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34882790

RESUMEN

BACKGROUND: While the cerebellum is traditionally known for its role in sensorimotor control, emerging research shows that particular subregions, such as right Crus I (RCrusI), support language and social processing. Indeed, cerebellar atypicalities are commonly reported in autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by socio-communicative impairments. However, the cerebellum's contribution to early socio-communicative development remains virtually unknown. METHODS: Here, we characterized functional connectivity within cerebro-cerebellar networks implicated in language/social functions in 9-month-old infants who exhibit distinct 3-year socio-communicative developmental profiles. We employed a data-driven clustering approach to stratify our sample of infants at high (n = 82) and low (n = 37) familial risk for ASD into three cohorts-Delayed, Late-Blooming, and Typical-who showed unique socio-communicative trajectories. We then compared the cohorts on indices of language and social development. Seed-based functional connectivity analyses with RCrusI were conducted on infants with fMRI data (n = 66). Cohorts were compared on connectivity estimates from a-priori regions, selected on the basis of reported coactivation with RCrusI during language/social tasks. RESULTS: The three trajectory-based cohorts broadly differed in social communication development, as evidenced by robust differences on numerous indices of language and social skills. Importantly, at 9 months, the cohorts showed striking differences in cerebro-cerebellar circuits implicated in language/social functions. For all regions examined, the Delayed cohort exhibited significantly weaker RCrusI connectivity compared to both the Late-Blooming and Typical cohorts, with no significant differences between the latter cohorts. CONCLUSIONS: We show that hypoconnectivity within distinct cerebro-cerebellar networks in infancy predicts altered socio-communicative development before delays overtly manifest, which may be relevant for early detection and intervention. As the cerebellum is implicated in prediction, our findings point to probabilistic learning as a potential intermediary mechanism that may be disrupted in infancy, cascading into alterations in social communication.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Comunicación , Humanos , Lactante , Imagen por Resonancia Magnética
4.
J Child Psychol Psychiatry ; 62(10): 1183-1194, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33587311

RESUMEN

BACKGROUND: Individuals with Autism Spectrum Disorder (ASD) commonly show sensory over-responsivity (SOR), an impairing condition related to over-reactive brain and behavioral responses to aversive stimuli. While individuals with ASD often show atypically high physiological arousal, it is unclear how this relates to sensory reactivity. We therefore investigated how physiological arousal relates to brain and behavioral indices of SOR, to inform understanding of the biological mechanisms underlying SOR and to determine whether physiological measures are associated with SOR-related brain responses. METHODS: Youth aged 8-18 (49 ASD; 30 age- and performance-IQ-matched typically developing (TD)) experienced mildly aversive tactile and auditory stimuli first during functional magnetic resonance imaging (N = 41 ASD, 26 TD) and then during skin conductance (SCR) (N = 48 ASD, 28 TD) and heart rate (HR) measurements (N = 48 ASD, 30 TD). Parents reported on their children's SOR severity. RESULTS: Autism Spectrum Disorder youth overall displayed greater SCR to aversive sensory stimulation than TD youth and greater baseline HR. Within ASD, higher SOR was associated with higher mean HR across all stimuli after controlling for baseline HR. Furthermore, the ASD group overall, and the ASD-high-SOR group in particular, showed reduced HR deceleration/greater acceleration to sensory stimulation compared to the TD group. Both SCR and HR were associated with brain responses to sensory stimulation in regions previously associated with SOR and sensory regulation. CONCLUSIONS: Autism Spectrum Disorder youth displayed heightened physiological arousal to mildly aversive sensory stimulation, with HR responses in particular showing associations with brain and behavioral measures of SOR. These results have implications for using psychophysiological measures to assess SOR, particularly in individuals with ASD who cannot undergo MRI.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Atención , Encéfalo/diagnóstico por imagen , Niño , Humanos , Imagen por Resonancia Magnética
5.
Front Psychiatry ; 15: 1337921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590791

RESUMEN

The cerebellum has been consistently shown to be atypical in autism spectrum disorder (ASD). However, despite its known role in sensorimotor function, there is limited research on its association with sensory over-responsivity (SOR), a common and impairing feature of ASD. Thus, this study sought to examine functional connectivity of the sensorimotor cerebellum in ASD compared to typically developing (TD) youth and investigate whether cerebellar connectivity is associated with SOR. Resting-state functional connectivity of the sensorimotor cerebellum was examined in 54 ASD and 43 TD youth aged 8-18 years. Using a seed-based approach, connectivity of each sensorimotor cerebellar region (defined as lobules I-IV, V-VI and VIIIA&B) with the whole brain was examined in ASD compared to TD youth, and correlated with parent-reported SOR severity. Across all participants, the sensorimotor cerebellum was functionally connected with sensorimotor and visual regions, though the three seed regions showed distinct connectivity with limbic and higher-order sensory regions. ASD youth showed differences in connectivity including atypical connectivity within the cerebellum and increased connectivity with hippocampus and thalamus compared to TD youth. More severe SOR was associated with stronger connectivity with cortical regions involved in sensory and motor processes and weaker connectivity with cognitive and socio-emotional regions, particularly prefrontal cortex. These results suggest that atypical cerebellum function in ASD may play a role in sensory challenges in autism.

6.
J Speech Lang Hear Res ; 67(6): 1785-1802, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38701392

RESUMEN

PURPOSE: This study examined the impact of bilingualism on affective theory of mind (ToM) and social prioritization (SP) among autistic adults compared to neurotypical comparison participants. METHOD: Fifty-two (25 autistic, 27 neurotypical) adult participants (ages 21-35 years) with varying second language (L2) experience, ranging from monolingual to bilingual, completed an affective ToM task. A subset of this sample also completed a dynamic eye-tracking task designed to capture differences in time spent looking at social aspects of a scene (SP). Four language groups were compared on task performance (monolingual autism and neurotypical, bilingual autism and neurotypical), followed by analyses examining the contribution of L2 experience, autism characteristics, and social face prioritization on affective ToM, controlling for verbal IQ. Finally, we conducted an analysis to identify the contribution of SP on affective ToM when moderated by autism status and L2 experience, controlling for verbal IQ. RESULTS: The monolingual autism group performed significantly worse than the other three groups (bilingual autism, monolingual neurotypical, and bilingual neurotypical) on the affective ToM task; however, there were no significant differences between the bilingual autism group compared to the monolingual and bilingual neurotypical groups. For autistic individuals, affective ToM capabilities were positively associated with both verbal IQ and L2 experience but did not relate to autism characteristics or SP during eye tracking. Neurotypical participants showed greater SP during the eye-tracking task, and SP did not relate to L2 or autism characteristics for autistic individuals. SP and verbal IQ predicted affective ToM performance across autism and neurotypical groups, but this relationship was moderated by L2 experience; SP more strongly predicted affective ToM performance among participants with lower L2 experience (e.g., monolingual) and had less of an impact for those with higher L2 experience. CONCLUSION: This study provides support for a bilingual advantage in affective ToM for autistic individuals. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.25696083.


Asunto(s)
Trastorno Autístico , Multilingüismo , Teoría de la Mente , Humanos , Adulto , Masculino , Femenino , Adulto Joven , Trastorno Autístico/psicología , Afecto , Tecnología de Seguimiento Ocular
7.
Mol Autism ; 14(1): 38, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37817282

RESUMEN

BACKGROUND: Sensory over-responsivity (SOR) is an impairing sensory processing challenge in autism spectrum disorder (ASD) which shows heterogenous developmental trajectories and appears to improve into adulthood in some but not all autistic individuals. However, the neural mechanisms underlying interindividual differences in these trajectories are currently unknown. METHODS: Here, we used functional magnetic resonance imaging (fMRI) to investigate the association between age and neural activity linearly and nonlinearly in response to mildly aversive sensory stimulation as well as how SOR severity moderates this association. Participants included 52 ASD (14F) and 41 (13F) typically developing (TD) youth, aged 8.6-18.0 years. RESULTS: We found that in pre-teens, ASD children showed widespread activation differences in sensorimotor, frontal and cerebellar regions compared to TD children, while there were fewer differences between ASD and TD teens. In TD youth, older age was associated with less activation in the prefrontal cortex. In contrast, in ASD youth, older age was associated with more engagement of sensory integration and emotion regulation regions. In particular, orbitofrontal and medial prefrontal cortices showed a nonlinear relationship with age in ASD, with an especially steep increase in sensory-evoked neural activity during the mid-to-late teen years. There was also an interaction between age and SOR severity in ASD youth such that these age-related trends were more apparent in youth with higher SOR. LIMITATIONS: The cross-sectional design limits causal interpretations of the data. Future longitudinal studies will be instrumental in determining how prefrontal engagement and SOR co-develop across adolescence. CONCLUSIONS: Our results suggest that enhanced recruitment of prefrontal regions may underlie age-related decreases in SOR for a subgroup of ASD youth.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Niño , Humanos , Trastorno Autístico/diagnóstico por imagen , Estudios Transversales , Corteza Prefrontal/diagnóstico por imagen , Cerebelo , Imagen por Resonancia Magnética/métodos
8.
J Autism Dev Disord ; 53(10): 3860-3872, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35927515

RESUMEN

Sensory features are common and impairing in autism spectrum disorder (ASD), but there are few observational sensory assessments that are valid across ages. We used the Sensory Processing 3-Dimensional (SP3-D) observed Assessment and parent-reported Inventory to examine sensory responsivity in 41 ASD and 33 typically-developing (TD) youth across 7-17 years. ASD youth had higher and more variable observed and reported sensory responsivity symptoms compared to TD, but the two measures were not correlated. Observed sensory over-responsivity (SOR) and sensory craving (SC) decreased with age in ASD, though SOR remained higher in ASD versus TD through adolescence. Results suggest that in ASD, the SP3-D Assessment can identify SOR through adolescence, and that there is value in integrating multiple sensory measures.


Asunto(s)
Trastorno del Espectro Autista , Adolescente , Humanos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/complicaciones , Trastornos de la Sensación/diagnóstico , Trastornos de la Sensación/complicaciones , Sensación
9.
Psychiatry Res Neuroimaging ; 333: 111660, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301129

RESUMEN

BACKGROUND: Anhedonia is hypothesized to be associated with blunted mesocorticolimbic dopamine (DA) functioning in samples with major depressive disorder. The purpose of this study was to examine linkages between striatal DA, reward circuitry functioning, anhedonia, and, in an exploratory fashion, self-reported stress, in a transdiagnostic anhedonic sample. METHODS: Participants with (n = 25) and without (n = 12) clinically impairing anhedonia completed a reward-processing task during simultaneous positron emission tomography and magnetic resonance (PET-MR) imaging with [11C]raclopride, a DA D2/D3 receptor antagonist that selectively binds to striatal DA receptors. RESULTS: Relative to controls, the anhedonia group exhibited decreased task-related DA release in the left putamen, caudate, and nucleus accumbens and right putamen and pallidum. There were no group differences in task-related brain activation (fMRI) during reward processing after correcting for multiple comparisons. General functional connectivity (GFC) findings revealed blunted fMRI connectivity between PET-derived striatal seeds and target regions in the anhedonia group. Associations were identified between anhedonia severity and the magnitude of task-related DA release to rewards in the left putamen, but not mesocorticolimbic GFC. CONCLUSIONS: Results provide evidence for reduced striatal DA functioning during reward processing and blunted mesocorticolimbic network functional connectivity in a transdiagnostic sample with clinically significant anhedonia.


Asunto(s)
Trastorno Depresivo Mayor , Dopamina , Humanos , Racloprida , Dopamina/metabolismo , Anhedonia , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética
10.
J Neurodev Disord ; 13(1): 42, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556059

RESUMEN

BACKGROUND: Social interaction often occurs in noisy environments with many extraneous sensory stimuli. This is especially relevant for youth with autism spectrum disorders (ASD) who commonly experience sensory over-responsivity (SOR) in addition to social challenges. However, the relationship between SOR and social difficulties is still poorly understood and thus rarely addressed in interventions. This study investigated the effect of auditory sensory distracters on neural processing of emotion identification in youth with ASD and the effects of increasing attention to social cues by priming participants with their own emotional faces. METHODS: While undergoing functional magnetic resonance imaging (fMRI), 30 youth with ASD and 24 typically developing (TD) age-matched controls (ages 8-17 years) identified faces as happy or angry with and without simultaneously hearing aversive environmental noises. Halfway through the task, participants also viewed videos of their own emotional faces. The relationship between parent-rated auditory SOR and brain responses during the task was also examined. RESULTS: Despite showing comparable behavioral performance on the task, ASD and TD youth demonstrated distinct patterns of neural activity. Compared to TD, ASD youth showed greater increases in amygdala, insula, and primary sensory regions when identifying emotions with noises compared to no sounds. After viewing videos of their own emotion faces, ASD youth showed greater increases in medial prefrontal cortex activation compared to TD youth. Within ASD youth, lower SOR was associated with reduced increased activity in subcortical regions after the prime and greater increased activity in the ventromedial prefrontal cortex after the prime, particularly in trials with noises. CONCLUSIONS: The results suggest that the sensory environment plays an important role in how ASD youth process social information. Additionally, we demonstrated that increasing attention to relevant social cues helps ASD youth engage frontal regions involved in higher-order social cognition, a mechanism that could be targeted in interventions. Importantly, the effect of the intervention may depend on individual differences in SOR, supporting the importance of pre-screening youth for sensory challenges prior to social interventions.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Amígdala del Cerebelo , Trastorno del Espectro Autista/diagnóstico por imagen , Niño , Emociones , Humanos , Imagen por Resonancia Magnética
11.
Transl Psychiatry ; 11(1): 39, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436538

RESUMEN

Sensory over-responsivity (SOR), extreme sensitivity to or avoidance of sensory stimuli (e.g., scratchy fabrics, loud sounds), is a highly prevalent and impairing feature of neurodevelopmental disorders such as autism spectrum disorders (ASD), anxiety, and ADHD. Previous studies have found overactive brain responses and reduced modulation of thalamocortical connectivity in response to mildly aversive sensory stimulation in ASD. These findings suggest altered thalamic sensory gating which could be associated with an excitatory/inhibitory neurochemical imbalance, but such thalamic neurochemistry has never been examined in relation to SOR. Here we utilized magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to examine the relationship between thalamic and somatosensory cortex inhibitory (gamma-aminobutyric acid, GABA) and excitatory (glutamate) neurochemicals with the intrinsic functional connectivity of those regions in 35 ASD and 35 typically developing pediatric subjects. Although there were no diagnostic group differences in neurochemical concentrations in either region, within the ASD group, SOR severity correlated negatively with thalamic GABA (r = -0.48, p < 0.05) and positively with somatosensory glutamate (r = 0.68, p < 0.01). Further, in the ASD group, thalamic GABA concentration predicted altered connectivity with regions previously implicated in SOR. These variations in GABA and associated network connectivity in the ASD group highlight the potential role of GABA as a mechanism underlying individual differences in SOR, a major source of phenotypic heterogeneity in ASD. In ASD, abnormalities of the thalamic neurochemical balance could interfere with the thalamic role in integrating, relaying, and inhibiting attention to sensory information. These results have implications for future research and GABA-modulating pharmacologic interventions.


Asunto(s)
Trastorno del Espectro Autista , Imagen por Resonancia Magnética , Encéfalo , Niño , Humanos , Espectroscopía de Resonancia Magnética , Tálamo/diagnóstico por imagen
12.
Autism Res ; 13(9): 1489-1500, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32860348

RESUMEN

Individuals with autism spectrum disorder (ASD) are significantly more likely to experience sensory over-responsivity (SOR) compared to neurotypical controls. SOR in autism has been shown to be related to atypical functional connectivity in the salience network (SN), a brain network thought to help direct attention to the most relevant stimuli in one's environment. However, all studies to date which have examined the neurobiological basis of sensory processing in ASD have used primarily male samples so little is known about sex differences in the neural processing of sensory information. This study examined the relationship between SOR and resting-state functional connectivity in the SN for 37 males and 16 females with autism, ages 8-17 years. While there were no sex differences in parent-rated SOR symptoms, there were significant sex differences in how SOR related to SN connectivity. Relative to females with ASD, males with ASD showed a stronger association between SOR and increased connectivity between the salience and primary sensory networks, suggesting increased allocation to sensory information. Conversely, for females with ASD, SOR was more strongly related to increased connectivity between the SN and prefrontal cortex. Results suggest that the underlying mechanisms of SOR in ASD are sex specific, providing insight into the differences seen in the diagnosis rate and symptom profiles of males and females with ASD. LAY SUMMARY: Sensory over-responsivity (SOR) is common in autism. Most research on the neural basis of SOR has focused on males, so little is known about SOR or its neurobiology in females with autism spectrum disorder. Here despite no sex differences in SOR symptoms, we found sex differences in how SOR related to intrinsic connectivity in a salience detection network. Results show sex differences in the neural mechanisms underlying SOR and inform sex differences seen in diagnosis rates and symptom profiles in autism. Autism Res 2020, 13: 1489-1500. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.


Asunto(s)
Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Caracteres Sexuales , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Mapeo Encefálico , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
13.
Dev Cogn Neurosci ; 45: 100814, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32658762

RESUMEN

Prior studies have demonstrated that infants and toddlers who later go on to develop autism spectrum disorder (ASD) show atypical functional connectivity as well as altered neural processing of language and other auditory stimuli, but the timeline underlying the emergence of these altered developmental trajectories is still unclear. Here we used resting-state fMRI (rsfMRI) during natural sleep to examine the longitudinal development of functional connectivity in language-related networks from 1.5 to 9 months of age. We found that functional connectivity of networks that underlie the integration of sensory and motor representations, which is crucial for language development, is disrupted in infants at high familial risk (HR) for developing ASD as early as 1.5 months of age. By 9 months of age, HR infants showed hyperconnectivity between auditory and somatosensory regions whereas low risk (LR) infants displayed greater intrahemispheric connectivity between auditory cortex and higher-order temporal regions as well as the hippocampus. Furthermore, while LR infants showed robust changes in functional connectivity during the first year of life with increasing long-range connectivity accompanied by decreasing short-range connectivity over time, HR infants displayed limited developmental changes. Our findings demonstrate that early disruptions in the development of language-related network connectivity may provide an early marker for the later emergence of ASD symptomatology.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Predisposición Genética a la Enfermedad/genética , Desarrollo del Lenguaje , Imagen por Resonancia Magnética/métodos , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Riesgo
14.
Am J Psychiatry ; 176(12): 1010-1020, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31230465

RESUMEN

OBJECTIVE: Sensory overresponsivity (SOR), an atypical negative reaction to sensory stimuli, is highly prevalent in autism spectrum disorder (ASD). Previous work has related SOR to increased brain response in sensory-limbic regions. This study investigated where these atypical responses fall in three fundamental stages of sensory processing: arousal (i.e., initial response), habituation (i.e., change in response over time), and generalization of response to novel stimuli. Different areas of atypical response would require distinct intervention approaches. METHODS: Functional MRI was used to examine these patterns of neural habituation to two sets of similar mildly aversive auditory and tactile stimuli in 42 high-functioning children and adolescents with ASD (21 with high levels of SOR and 21 with low levels of SOR) and 27 age-matched typically developing youths (ages 8-17). The relationship between SOR and change in amygdala-prefrontal functional connectivity across the sensory stimulation was also examined. RESULTS: Across repeated sensory stimulation, high-SOR participants with ASD showed reduced ability to maintain habituation in the amygdala and relevant sensory cortices and to maintain inhibition of irrelevant sensory cortices. These results indicate that sensory habituation is a dynamic, time-varying process dependent on sustained regulation across time, which is a particular deficit in high-SOR participants with ASD. However, low-SOR participants with ASD also showed distinct, nontypical neural response patterns, including reduced responsiveness to novel but similar stimuli and increases in prefrontal-amygdala regulation across the sensory exposure. CONCLUSIONS: The results suggest that all children with autism have atypical brain responses to sensory stimuli, but whether they express atypical behavioral responses depends on top-down regulatory mechanisms. Results are discussed in terms of targeted intervention approaches.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Sensibilización del Sistema Nervioso Central/fisiología , Generalización Psicológica/fisiología , Habituación Psicofisiológica/fisiología , Estimulación Acústica , Adolescente , Amígdala del Cerebelo/fisiopatología , Nivel de Alerta , Estudios de Casos y Controles , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/fisiopatología , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA