RESUMEN
Insulin gene coding sequence mutations are known to cause mutant INS-gene-induced diabetes of youth (MIDY), yet the cellular pathways needed to prevent misfolded proinsulin accumulation remain incompletely understood. Here, we report that Akita mutant proinsulin forms detergent-insoluble aggregates that entrap wild-type (WT) proinsulin in the endoplasmic reticulum (ER), thereby blocking insulin production. Two distinct quality-control mechanisms operate together to combat this insult: the ER luminal chaperone Grp170 prevents proinsulin aggregation, while the ER membrane morphogenic protein reticulon-3 (RTN3) disposes of aggregates via ER-coupled autophagy (ER-phagy). We show that enhanced RTN-dependent clearance of aggregated Akita proinsulin helps to restore ER export of WT proinsulin, which can promote WT insulin production, potentially alleviating MIDY. We also find that RTN3 participates in the clearance of other mutant prohormone aggregates. Together, these results identify a series of substrates of RTN3-mediated ER-phagy, highlighting RTN3 in the disposal of pathogenic prohormone aggregates.
Asunto(s)
Proteínas Portadoras/genética , Diabetes Mellitus/genética , Proteínas HSP70 de Choque Térmico/genética , Insulina/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Proinsulina/genética , Autofagia/genética , Diabetes Mellitus/patología , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Insulina/biosíntesis , Mutación/genética , Proinsulina/biosíntesis , Agregado de Proteínas/genética , Pliegue de Proteína , ARN Interferente Pequeño/genéticaRESUMEN
The metabolic compartmentalization enabled by mitochondria is key feature of many cellular processes such as energy conversion to ATP production, redox balance, and the biosynthesis of heme, urea, nucleotides, lipids, and others. For a majority of these functions, metabolites need to be transported across the impermeable inner mitochondrial membrane by dedicated carrier proteins. Here, we examine the substrates, structural features, and human health implications of four mitochondrial metabolite carrier families: the SLC25A family, the mitochondrial ABCB transporters, the mitochondrial pyruvate carrier (MPC), and the sideroflexin proteins.
Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales , Transporte Biológico , Proteínas Portadoras/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismoRESUMEN
TREX-2 is a five protein complex, conserved from yeast to humans, involved in linking mRNA transcription and export. The centrin 2 subunit of TREX-2 is also a component of the centrosome and is additionally involved in a distinctly different process of nuclear protein export. While centrin 2 is a known multifunctional protein, the roles of other human TREX-2 complex proteins other than mRNA export are not known. In this study, we found that human TREX-2 member PCID2 but not ENY2 is involved in some of the same cellular processes as those of centrin 2 apart from the classical TREX-2 function. PCID2 is present at the centrosome in a subset of HeLa cells and this localization is centrin 2 dependent. Furthermore, the presence of PCID2 at the centrosome is prevalent throughout the cell cycle as determined by co-staining with cyclins E, A and B. PCID2 but not ENY2 is also involved in protein export. Surprisingly, siRNA knockdown of PCID2 delayed the rate of nuclear protein export, a mechanism distinct from the effects of centrin 2, which when knocked down inhibits export. Finally we showed that co-depletion of centrin 2 and PCID2 leads to blocking rather than delaying nuclear protein export, indicating the dominance of the centrin 2 phenotype. Together these results represent the first discovery of specific novel functions for PCID2 other than mRNA export and suggest that components of the TREX-2 complex serve alternative shared roles in the regulation of nuclear transport and cell cycle progression.
Asunto(s)
Proteínas de Unión al Calcio/fisiología , Proteínas de Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Exodesoxirribonucleasas/fisiología , Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Factores de Transcripción/fisiología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Proteínas de Unión al Calcio/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Centrosoma/efectos de los fármacos , Exodesoxirribonucleasas/antagonistas & inhibidores , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/fisiología , ARN Interferente Pequeño/farmacología , Distribución Tisular/efectos de los fármacos , Distribución Tisular/genética , Células Tumorales CultivadasRESUMEN
Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question. We report that loss of the Sit4 protein phosphatase in yeast increases mitochondrial membrane potential, both by inducing the electron transport chain and the phosphate starvation response. Indeed, a similarly elevated mitochondrial membrane potential is also elicited simply by phosphate starvation or by abrogation of the Pho85-dependent phosphate sensing pathway. This enhanced membrane potential is primarily driven by an unexpected activity of the ADP/ATP carrier. We also demonstrate that this connection between phosphate limitation and enhancement of mitochondrial membrane potential is observed in primary and immortalized mammalian cells as well as in Drosophila. These data suggest that mitochondrial membrane potential is subject to environmental stimuli and intracellular signaling regulation and raise the possibility for therapeutic enhancement of mitochondrial function even in defective mitochondria.
Asunto(s)
Fosfatos , Saccharomyces cerevisiae , Animales , Potencial de la Membrana Mitocondrial , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Respiración , Mamíferos/metabolismoRESUMEN
Lactate is the highest turnover circulating metabolite in mammals. While traditionally viewed as a waste product, lactate is an important energy source for many organs, but first must be oxidized to pyruvate for entry into the tricarboxylic acid cycle (TCA cycle). This reaction is thought to occur in the cytosol, with pyruvate subsequently transported into mitochondria via the mitochondrial pyruvate carrier (MPC). Using 13C stable isotope tracing, we demonstrated that lactate is oxidized in the myocardial tissue of mice even when the MPC is genetically deleted. This MPC-independent lactate import and mitochondrial oxidation is dependent upon the monocarboxylate transporter 1 (MCT1/Slc16a1). Mitochondria isolated from the myocardium without MCT1 exhibit a specific defect in mitochondrial lactate, but not pyruvate, metabolism. The import and subsequent mitochondrial oxidation of lactate by mitochondrial lactate dehydrogenase (LDH) acts as an electron shuttle, generating sufficient NADH to support respiration even when the TCA cycle is disrupted. In response to diverse cardiac insults, animals with hearts lacking MCT1 undergo rapid progression to heart failure with reduced ejection fraction. Thus, the mitochondrial import and oxidation of lactate enables carbohydrate entry into the TCA cycle to sustain cardiac energetics and maintain myocardial structure and function under stress conditions.
RESUMEN
The fate of pyruvate is a defining feature in many cell types. One major fate is mitochondrial entry via the mitochondrial pyruvate carrier (MPC). We found that diffuse large B cell lymphomas (DLBCLs) consume mitochondrial pyruvate via glutamate-pyruvate transaminase 2 to enable α-ketoglutarate production as part of glutaminolysis. This led us to discover that glutamine exceeds pyruvate as a carbon source for the tricarboxylic acid cycle in DLBCLs. As a result, MPC inhibition led to decreased glutaminolysis in DLBCLs, opposite to previous observations in other cell types. We also found that MPC inhibition or genetic depletion decreased DLBCL proliferation in an extracellular matrix (ECM)-like environment and xenografts, but not in a suspension environment. Moreover, the metabolic profile of DLBCL cells in ECM is markedly different from cells in a suspension environment. Thus, we conclude that the synergistic consumption and assimilation of glutamine and pyruvate enables DLBCL proliferation in an extracellular environment-dependent manner.
RESUMEN
The tumor suppressor gene PTEN is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of PTEN itself, which frequently disrupts adjacent genes. Coincidental loss of PTEN-adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically. Here, we describe how the loss of ATAD1, which is adjacent to and frequently co-deleted with PTEN, predisposes cancer cells to apoptosis triggered by proteasome dysfunction and correlates with improved survival in cancer patients. ATAD1 directly and specifically extracts the pro-apoptotic protein BIM from mitochondria to inactivate it. Cultured cells and mouse xenografts lacking ATAD1 are hypersensitive to clinically used proteasome inhibitors, which activate BIM and trigger apoptosis. This work furthers our understanding of mitochondrial protein homeostasis and could lead to new therapeutic options for the hundreds of thousands of cancer patients who have tumors with chromosome 10q23 deletion.
Cancer cells have often lost genetic sequences that control when and how cell division takes place. Deleting these genes, however, is not an exact art, and neighboring sequences regularly get removed in the process. For example, the loss of the tumor suppressor gene PTEN, the second most deleted gene in cancer, frequently involves the removal of the nearby ATAD1 gene. While hundreds of thousands of human tumors completely lack ATAD1, individuals born without a functional version of this gene do not survive past early childhood. How can tumor cells cope without ATAD1 and could these coping strategies become the target for new therapies? Winter et al. aimed to answer these questions by examining a variety of cancer cells lacking ATAD1 in the laboratory. Under normal circumstances, the enzyme that this gene codes for sits at the surface of mitochondria, the cellular compartments essential for energy production. There, it extracts any faulty, defective proteins that may otherwise cause havoc and endanger mitochondrial health. Experiments revealed that without ATAD1, cancer cells started to rely more heavily on an alternative mechanism to remove harmful proteins: the process centers on MARCH5, an enzyme which tags molecules that require removal so the cell can recycle them. Drugs that block the pathway involving MARCH5 already exist, but they have so far been employed to treat other types of tumors. Winter et al. showed that using these compounds led to the death of cancerous ATAD1-deficient cells, including in human tumors grown in mice. Overall, this work demonstrates that cancer cells which have lost ATAD1 become more vulnerable to disruptions in the protein removal pathway mediated by MARCH5, including via already existing drugs. If confirmed by further translational work, these findings could have important clinical impact given how frequently PTEN and ATAD1 are lost together in cancer.
Asunto(s)
Neoplasias , Complejo de la Endopetidasa Proteasomal , Humanos , Animales , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Mitocondrias/metabolismo , Neoplasias/genéticaRESUMEN
The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.
Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Cardiomegalia/patología , Insuficiencia Cardíaca/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Animales , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Anión/genética , Cardiomegalia/inducido químicamente , Cardiomegalia/complicaciones , Insuficiencia Cardíaca/etiología , Corazón Auxiliar , Humanos , Ácido Láctico/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/antagonistas & inhibidores , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ácido Pirúvico/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Función Ventricular Izquierda/fisiologíaRESUMEN
The endoplasmic reticulum (ER) is broadly distributed throughout the cytoplasm of pancreatic beta cells, and this is where all proinsulin is initially made. Healthy beta cells can synthesize 6000 proinsulin molecules per second. Ordinarily, nascent proinsulin entering the ER rapidly folds via the formation of three evolutionarily conserved disulfide bonds (B7-A7, B19-A20, and A6-A11). A modest amount of proinsulin misfolding, including both intramolecular disulfide mispairing and intermolecular disulfide-linked protein complexes, is a natural by-product of proinsulin biosynthesis, as is the case for many proteins. The steady-state level of misfolded proinsulin-a potential ER stressor-is linked to (1) production rate, (2) ER environment, (3) presence or absence of naturally occurring (mutational) defects in proinsulin, and (4) clearance of misfolded proinsulin molecules. Accumulation of misfolded proinsulin beyond a certain threshold begins to interfere with the normal intracellular transport of bystander proinsulin, leading to diminished insulin production and hyperglycemia, as well as exacerbating ER stress. This is most obvious in mutant INS gene-induced Diabetes of Youth (MIDY; an autosomal dominant disease) but also likely to occur in type 2 diabetes owing to dysregulation in proinsulin synthesis, ER folding environment, or clearance.
Asunto(s)
Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/patología , Proinsulina/metabolismo , Animales , Estrés del Retículo Endoplásmico , Humanos , Mutación , Proinsulina/biosíntesis , Proinsulina/química , Proinsulina/genética , Pliegue de Proteína , Transporte de ProteínasRESUMEN
In heterozygous patients with a diabetic syndrome called mutant INS gene-induced diabetes of youth (MIDY), there is decreased insulin secretion when mutant proinsulin expression prevents wild-type (WT) proinsulin from exiting the endoplasmic reticulum (ER), which is essential for insulin production. Our previous results revealed that mutant Akita proinsulin is triaged by ER-associated degradation (ERAD). We now find that the ER chaperone Grp170 participates in the degradation process by shifting Akita proinsulin from high-molecular weight (MW) complexes toward smaller oligomeric species that are competent to undergo ERAD. Strikingly, overexpressing Grp170 also liberates WT proinsulin, which is no longer trapped in these high-MW complexes, enhancing ERAD of Akita proinsulin and restoring WT insulin secretion. Our data reveal that Grp170 participates in preparing mutant proinsulin for degradation while enabling WT proinsulin escape from the ER. In principle, selective destruction of mutant proinsulin offers a rational approach to rectify the insulin secretion problem in MIDY.