RESUMEN
Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Humanos , Microvellosidades/metabolismo , Fosforilación , Fosfotransferasas/metabolismoRESUMEN
During infection, the bacterial pathogen Legionella pneumophila manipulates a variety of host cell signaling pathways, including the Hippo pathway which controls cell proliferation and differentiation in eukaryotes. Our previous studies revealed that L. pneumophila encodes the effector kinase LegK7 which phosphorylates MOB1A, a highly conserved scaffold protein of the Hippo pathway. Here, we show that MOB1A, in addition to being a substrate of LegK7, also functions as an allosteric activator of its kinase activity. A crystallographic analysis of the LegK7-MOB1A complex revealed that the N-terminal half of LegK7 is structurally similar to eukaryotic protein kinases, and that MOB1A directly binds to the LegK7 kinase domain. Substitution of interface residues critical for complex formation abrogated allosteric activation of LegK7 both in vitro and within cells and diminished MOB1A phosphorylation. Importantly, the N-terminal extension (NTE) of MOB1A not only regulated complex formation with LegK7 but also served as a docking site for downstream substrates such as the transcriptional coregulator YAP1. Deletion of the NTE from MOB1A or addition of NTE peptides as binding competitors attenuated YAP1 recruitment to and phosphorylation by LegK7. By providing mechanistic insight into the formation and regulation of the LegK7-MOB1A complex, our study unravels a sophisticated molecular mimicry strategy that is used by L. pneumophila to take control of the host cell Hippo pathway.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Legionella pneumophila/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación Alostérica , Animales , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/patología , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Ratones , Simulación de Dinámica Molecular , Imitación Molecular , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAPRESUMEN
The K-homology (KH) domain is a nucleic acid-binding domain present in many proteins. Recently, we found that the DEAD-box helicase DDX43 contains a KH domain in its N-terminus; however, its function remains unknown. Here, we purified recombinant DDX43 KH domain protein and found that it prefers binding ssDNA and ssRNA. Electrophoretic mobility shift assay and NMR revealed that the KH domain favors pyrimidines over purines. Mutational analysis showed that the GXXG loop in the KH domain is involved in pyrimidine binding. Moreover, we found that an alanine residue adjacent to the GXXG loop is critical for binding. Systematic evolution of ligands by exponential enrichment, chromatin immunoprecipitation-seq, and cross-linking immunoprecipitation-seq showed that the KH domain binds C-/T-rich DNA and U-rich RNA. Bioinformatics analysis suggested that the KH domain prefers to bind promoters. Using 15N-heteronuclear single quantum coherence NMR, the optimal binding sequence was identified as TTGT. Finally, we found that the full-length DDX43 helicase prefers DNA or RNA substrates with TTGT or UUGU single-stranded tails and that the KH domain is critically important for sequence specificity and unwinding processivity. Collectively, our results demonstrated that the KH domain facilitates the substrate specificity and processivity of the DDX43 helicase.
Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Biología Computacional , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Humanos , Estabilidad Proteica , Purinas/química , Purinas/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Técnica SELEX de Producción de Aptámeros , Especificidad por SustratoRESUMEN
Strains of Salmonella utilize two distinct type three secretion systems to deliver effector proteins directly into host cells. The Salmonella effectors SseK1 and SseK3 are arginine glycosyltransferases that modify mammalian death domain containing proteins with N-acetyl glucosamine (GlcNAc) when overexpressed ectopically or as recombinant protein fusions. Here, we combined Arg-GlcNAc glycopeptide immunoprecipitation and mass spectrometry to identify host proteins GlcNAcylated by endogenous levels of SseK1 and SseK3 during Salmonella infection. We observed that SseK1 modified the mammalian signaling protein TRADD, but not FADD as previously reported. Overexpression of SseK1 greatly broadened substrate specificity, whereas ectopic co-expression of SseK1 and TRADD increased the range of modified arginine residues within the death domain of TRADD. In contrast, endogenous levels of SseK3 resulted in modification of the death domains of receptors of the mammalian TNF superfamily, TNFR1 and TRAILR, at residues Arg376 and Arg293 respectively. Structural studies on SseK3 showed that the enzyme displays a classic GT-A glycosyltransferase fold and binds UDP-GlcNAc in a narrow and deep cleft with the GlcNAc facing the surface. Together our data suggest that salmonellae carrying sseK1 and sseK3 employ the glycosyltransferase effectors to antagonise different components of death receptor signaling.
Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella/metabolismo , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Acetilglucosamina/metabolismo , Animales , Proteínas Bacterianas/química , Secuencia Conservada , Ácido Glutámico/metabolismo , Glicosilación , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Mutación/genética , Dominios Proteicos , Células RAW 264.7 , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Especificidad por Sustrato , Proteína de Dominio de Muerte Asociada a Receptor de TNF/química , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismoRESUMEN
Ulvan is a major cell wall component of green algae of the genus Ulva, and some marine bacteria encode enzymes that can degrade this polysaccharide. The first ulvan-degrading lyases have been recently characterized, and several putative ulvan lyases have been recombinantly expressed, confirmed as ulvan lyases, and partially characterized. Two families of ulvan-degrading lyases, PL24 and PL25, have recently been established. The PL24 lyase LOR_107 from the bacterial Alteromonadales sp. strain LOR degrades ulvan endolytically, cleaving the bond at the C4 of a glucuronic acid. However, the mechanism and LOR_107 structural features involved are unknown. We present here the crystal structure of LOR_107, representing the first PL24 family structure. We found that LOR_107 adopts a seven-bladed ß-propeller fold with a deep canyon on one side of the protein. Comparative sequence analysis revealed a cluster of conserved residues within this canyon, and site-directed mutagenesis disclosed several residues essential for catalysis. We also found that LOR_107 uses the His/Tyr catalytic mechanism, common to several PL families. We captured a tetrasaccharide substrate in the structures of two inactive mutants, which indicated a two-step binding event, with the first substrate interaction near the top of the canyon coordinated by Arg320, followed by sliding of the substrate into the canyon toward the active-site residues. Surprisingly, the LOR_107 structure was very similar to that of the PL25 family PLSV_3936, despite only â¼14% sequence identity between the two enzymes. On the basis of our structural and mutational analyses, we propose a catalytic mechanism for LOR_107 that differs from the typical His/Tyr mechanism.
Asunto(s)
Alteromonadaceae/enzimología , Mutación , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Polisacáridos/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Polisacárido Liasas/genética , Conformación Proteica , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Legionella pneumophila is a Gram-negative pathogenic bacterium that causes severe pneumonia in humans. It establishes a replicative niche called Legionella-containing vacuole (LCV) that allows bacteria to survive and replicate inside pulmonary macrophages. To hijack host cell defense systems, L. pneumophila injects over 300 effector proteins into the host cell cytosol. The Lem4 effector (lpg1101) consists of two domains: an N-terminal haloacid dehalogenase (HAD) domain with unknown function and a C-terminal phosphatidylinositol 4-phosphate-binding domain that anchors Lem4 to the membrane of early LCVs. Herein, we demonstrate that the HAD domain (Lem4-N) is structurally similar to mouse MDP-1 phosphatase and displays phosphotyrosine phosphatase activity. Substrate specificity of Lem4 was probed using a tyrosine phosphatase substrate set, which contained a selection of 360 phosphopeptides derived from human phosphorylation sites. This assay allowed us to identify a consensus pTyr-containing motif. Based on the localization of Lem4 to lysosomes and to some extent to plasma membrane when expressed in human cells, we hypothesize that this protein is involved in protein-protein interactions with an LCV or plasma membrane-associated tyrosine-phosphorylated host target.
Asunto(s)
Membrana Celular/metabolismo , Legionella pneumophila/enzimología , Lisosomas/metabolismo , Fosfoproteínas Fosfatasas/química , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Humanos , Legionella pneumophila/genética , Ratones , Conformación Proteica , Transporte de Proteínas , Homología de SecuenciaRESUMEN
Ulvan is a complex sulfated polysaccharide present in the cell wall of green algae of the genus Ulva (Chlorophyta). The first ulvan-degrading polysaccharide lyases were identified several years ago, and more were discovered through genome sequencing of marine bacteria. Ulvan lyases are now grouped in three polysaccharide lyase (PL) families in the CAZy database, PL24, PL25, and PL28. The recently determined structures of the representative lyases from families PL24 and PL25 show that they adopt a seven-bladed ß-propeller fold and utilize the His/Tyr catalytic mechanism. No structural information is yet available for PL28 ulvan lyases. NLR48 from Nonlabens ulvanivorans belongs to PL28 together with its close paralog, NLR42. Biochemical studies of NLR42 have revealed that it can cleave ulvan next to both uronic acid epimers. We report the crystal structure of ulvan lyase NLR48 at 1.9-Å resolution. It has a ß-jelly roll fold with an extended, deep, and positively charged substrate-binding cleft. Putative active-site residues were identified from the sequence conservation pattern, and their role was confirmed by site-directed mutagenesis. The structure of an inactive K162M mutant with a tetrasaccharide substrate showed the substrate occupying the "-" subsites. Comparison with lyases from other PL families with ß-jelly roll folds supported assignment of the active site and explained its ability to degrade ulvan next to either epimer of uronic acid. NLR48 contains the His/Tyr catalytic machinery with Lys162 and Tyr281 playing the catalytic base/acid roles.
Asunto(s)
Flavobacteriaceae/enzimología , Polisacárido Liasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Flavobacteriaceae/química , Flavobacteriaceae/metabolismo , Modelos Moleculares , Oligosacáridos/metabolismo , Polisacárido Liasas/química , Conformación Proteica , Especificidad por SustratoRESUMEN
Intracellular pathogenic bacteria evade the immune response by replicating within host cells. Legionella pneumophila, the causative agent of Legionnaires' Disease, makes use of numerous effector proteins to construct a niche supportive of its replication within phagocytic cells. The L. pneumophila effector SidK was identified in a screen for proteins that reduce the activity of the proton pumping vacuolar-type ATPases (V-ATPases) when expressed in the yeast Saccharomyces cerevisae. SidK is secreted by L. pneumophila in the early stages of infection and by binding to and inhibiting the V-ATPase, SidK reduces phagosomal acidification and promotes survival of the bacterium inside macrophages. We determined crystal structures of the N-terminal region of SidK at 2.3 Å resolution and used single particle electron cryomicroscopy (cryo-EM) to determine structures of V-ATPase:SidK complexes at ~6.8 Å resolution. SidK is a flexible and elongated protein composed of an α-helical region that interacts with subunit A of the V-ATPase and a second region of unknown function that is flexibly-tethered to the first. SidK binds V-ATPase strongly by interacting via two α-helical bundles at its N terminus with subunit A. In vitro activity assays show that SidK does not inhibit the V-ATPase completely, but reduces its activity by ~40%, consistent with the partial V-ATPase deficiency phenotype its expression causes in yeast. The cryo-EM analysis shows that SidK reduces the flexibility of the A-subunit that is in the 'open' conformation. Fluorescence experiments indicate that SidK binding decreases the affinity of V-ATPase for a fluorescent analogue of ATP. Together, these results reveal the structural basis for the fine-tuning of V-ATPase activity by SidK.
Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Enzimológica de la Expresión Génica , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Enfermedad de los Legionarios/enzimología , Enfermedad de los Legionarios/genética , Conformación Proteica , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genéticaRESUMEN
Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1.
Asunto(s)
Sistemas de Secreción Bacterianos , Legionella pneumophila , Enfermedad de los Legionarios , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Virulencia , Sistemas de Secreción Bacterianos/química , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Células HEK293 , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/metabolismo , Metales/química , Metales/metabolismo , Dominios Proteicos , Relación Estructura-Actividad , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
Glycosaminoglycans (GAGs) are linear polysaccharides comprised of disaccharide repeat units, a hexuronic acid, glucuronic acid or iduronic acid, linked to a hexosamine, N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine. GAGs undergo further modification such as epimerization and sulfation. These polysaccharides are abundant in the extracellular matrix and connective tissues. GAGs function in stabilization of the fibrillar extracellular matrix, control of hydration, regulation of tissue, organism development by controlling cell cycle, cell behavior and differentiation. Niche adapted bacteria express enzymes called polysaccharide lyases (PL), which degrade GAGs for their nutrient content. PL have been classified into 24 sequence-related families. Comparison of 3D structures of the prototypic members of these families allowed identification of distant evolutionary relationships between lyases that were unrecognized at the sequence level, and identified occurrences of convergent evolution. We have characterized structurally and enzymatically heparinase III from Bacteroides thetaiotaomicron (BtHepIII; gene BT4657), which is classified within the PL12 family. BtHepIII is a 72.5 kDa protein. We present the X-ray structures of two crystal forms of BtHepIII at resolution 1.8 and 2.4 Å. BtHepIII contains two domains, the N-terminal α-helical domain forming a toroid and the C-terminal ß-sheet domain. Comparison with recently determined structures of two other heparinases from the same PL12 family allowed us to identify structural flexibility in the arrangement of the domains indicating open-close movement. Based on comparison with other GAG lyases, we identified Tyr301 as the main catalytic residue and confirmed this by site-directed mutagenesis. We have characterized substrate preference of BtHepIII toward sulfate-poor heparan sulfate substrate.
Asunto(s)
Bacteroides thetaiotaomicron/enzimología , Polisacárido Liasas/química , Conformación Proteica , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/química , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Polisacárido Liasas/genética , Unión Proteica , Especificidad por SustratoRESUMEN
INTRODUCTION: The threat bacterial pathogens pose to human health is increasing with the number and distribution of antibiotic-resistant bacteria, while the rate of discovery of new antimicrobials dwindles. Proteomics is playing key roles in understanding the molecular mechanisms of bacterial pathogenesis, and in identifying disease outcome determinants. The physical associations identified by proteomics can provide the means to develop pathogen-specific treatment methods that reduce the spread of antibiotic resistance and alleviate the negative effects of broad-spectrum antibiotics on beneficial bacteria. Areas covered: This review discusses recent trends in proteomics and introduces new and developing approaches that can be applied to the study of protein-protein interactions (PPIs) underlying bacterial pathogenesis. The approaches examined encompass options for mapping proteomes as well as stable and transient interactions in vivo and in vitro. We also explored the coverage of bacterial and human-bacterial PPIs, knowledge gaps in this area, and how they can be filled. Expert commentary: Identifying potential antimicrobial candidates is confounded by the complex molecular biology of bacterial pathogenesis and the lack of knowledge about PPIs underlying this process. Proteomics approaches can offer new perspectives for mechanistic insights and identify essential targets for guiding the discovery of next generation antimicrobials.
Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Interacciones Huésped-Patógeno/genética , Proteómica , Bacterias/patogenicidad , Humanos , Mapeo de Interacción de Proteínas/métodosRESUMEN
After a successful 10 years of operation, the Canadian Macromolecular Crystallography Facility 08ID-1 beamline will undergo an upgrade to establish micro-beam capability. This paper is mostly focussed on optics and computer simulations for ray tracing of the beamline. After completion, the focussed beam at the sample will have a much smaller size of 50 × 5 µm2 (H x V), allowing measurement of X-ray diffraction patterns from much smaller crystals than possible presently. The beamline will be equipped with a fast sample changer and an ultra-low noise photon counting detector, allowing shutter-less operation of the beamline. Additionally, it will be possible to perform in-situ room-temperature experiments.
Asunto(s)
Cristalografía por Rayos X/instrumentación , Sincrotrones , Cristalografía por Rayos X/métodos , Diseño de EquipoRESUMEN
Although glycopeptide antibiotics (GPAs), including vancomycin and teicoplanin, represent the most important class of anti-infective agents in the treatment of serious gram-positive bacterial infections, their usefulness is threatened by the emergence of resistant strains. GPAs are complex natural products consisting of a heptapeptide skeleton assembled via nonribosomal peptide synthesis and constrained through multiple crosslinks, with diversity resulting from enzymatic modifications by a variety of tailoring enzymes, which can be used to produce GPA analogues that could overcome antibiotic resistance. GPA-modifying sulfotransferases are promising tools for generating the unique derivatives. Despite significant sequence and structural similarities, these sulfotransferases modify distinct side chains on the GPA scaffold. To provide insight into the spatial diversity of modifications, we have determined the crystal structure of the ternary complex of bacterial sulfotransferase StaL with the cofactor product 3'-phosphoadenosine 5'-phosphate and desulfo-A47934 aglycone substrate. Desulfo-A47934 binds with the hydroxyl group on the 4-hydroxyphenylglycine in residue 1 directed toward the 3'-phosphoadenosine 5'-phosphate and hydrogen-bonded to the catalytic His67. Homodimeric StaL can accommodate GPA substrate in only one of the two active sites because of potential steric clashes. Importantly, the aglycone substrate demonstrates a flattened conformation, in contrast to the cup-shaped structures observed previously. Analysis of the conformations of this scaffold showed that despite the apparent rigidity due to crosslinking between the side chains, the aglycone scaffold displays substantial flexibility, important for enzymatic modifications by the GPA-tailoring enzymes. We also discuss the potential of using the current structural information in generating unique GPA derivatives.
Asunto(s)
Adenosina Difosfato/metabolismo , Antibacterianos/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Conformación Proteica , Ristocetina/análogos & derivados , Sulfotransferasas/metabolismo , Adenosina Difosfato/química , Antibacterianos/química , Cristalografía , Descubrimiento de Drogas/métodos , Glicina/análogos & derivados , Glicina/metabolismo , Enlace de Hidrógeno , Complejos Multiproteicos/metabolismo , Ristocetina/química , Ristocetina/metabolismo , Sulfotransferasas/químicaRESUMEN
Legionella pneumophila secretes over 300 effectors during the invasion of human cells. The functions of only a small number of them have been identified. LegC3 is one of the identified effectors, which is believed to act by inhibiting vacuolar fusion. It contains two predicted transmembrane helices that divide the protein into a larger N-terminal domain and a smaller C-terminal domain. The function of LegC3 has been shown to be associated primarily with the N-terminal domain, which contains coiled-coil sequence motifs. The structure of the N-terminal domain has been determined and it is shown that it is highly α-helical and contains a helical bundle followed by a long antiparallel coiled-coil. No similar protein fold has been observed in the PDB. A long loop at the tip of the coiled-coil distal from the membrane is disordered and may be important for interaction with an as yet unidentified protein.
Asunto(s)
Proteínas Bacterianas/química , Legionella pneumophila/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Legionella pneumophila/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaRESUMEN
A case study has been made on the treatment of the SIRAS (single isomorphous replacement with anomalous scattering) data of the originally unknown protein LegC3N. An alternative treatment has been proposed which led to improved results in this particular test case. The treatment involves iterative direct-method SAD (single-wavelength anomalous diffraction) phasing and direct-method-aided model completion, both of which are implanted in the IPCAS (Iterative Protein Crystal-structure Automatic Solution) pipeline. Apart from the experimental data, a simulated SIRAS data set for LegC3N with the derivative data truncated to 5.0â Å resolution has also been tested. SAD phasing and phase/model extension in PHENIX without direct methods failed to solve the structure using these simulated SIRAS data. However, the procedure proposed here involving direct methods in both SAD phasing and phase/model extension led to a nearly complete structure model. This shows the potential ability of treating SIRAS data with a derivative diffracting to lower resolution.
Asunto(s)
Cristalografía por Rayos X/métodos , Modelos Moleculares , Proteínas/química , Proteínas Bacterianas/química , Programas InformáticosRESUMEN
The Escherichia coli dihydroxyacetone (Dha) kinase is an unusual kinase because (i) it uses the phosphoenolpyruvate carbohydrate: phosphotransferase system (PTS) as the source of high-energy phosphate, (ii) the active site is formed by two subunits, and (iii) the substrate is covalently bound to His218(K)* of the DhaK subunit. The PTS transfers phosphate to DhaM, which in turn phosphorylates the permanently bound ADP coenzyme of DhaL. This phosphoryl group is subsequently transferred to the Dha substrate bound to DhaK. Here we report the crystal structure of the E. coli Dha kinase complex, DhaK-DhaL. The structure of the complex reveals that DhaK undergoes significant conformational changes to accommodate binding of DhaL. Combined mutagenesis and enzymatic activity studies of kinase mutants allow us to propose a catalytic mechanism for covalent Dha binding, phosphorylation, and release of the Dha-phosphate product. Our results show that His56(K) is involved in formation of the covalent hemiaminal bond with Dha. The structure of H56N(K) with noncovalently bound substrate reveals a somewhat different positioning of Dha in the binding pocket as compared to covalently bound Dha, showing that the covalent attachment to His218(K) orients the substrate optimally for phosphoryl transfer. Asp109(K) is critical for activity, likely acting as a general base activating the γ-OH of Dha. Our results provide a comprehensive picture of the roles of the highly conserved active site residues of dihydroxyacetone kinases.
Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Conformación Proteica , Sustitución de Aminoácidos , Sitios de Unión/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Especificidad por SustratoRESUMEN
Polysaccharides are ubiquitously distributed on the cell surface of bacteria. These polymers are involved in many processes, including immune avoidance and bacteria-host interactions, which are especially important for pathogenic organisms. In many instances, the lengths of these polysaccharides are not random, but rather distribute around some mean value, termed the modal length. A large family of proteins, called polysaccharide co-polymerases (PCPs), found in both Gram-negative and Gram-positive species regulate polysaccharide modal length. Recent crystal structures of Wzz proteins from Escherichia coli and Salmonella typhimurium provide the first atomic-resolution information for one family of PCPs, the PCP1 group. These crystal structures have important implications for the structures of other PCP families.
Asunto(s)
Proteínas Bacterianas/química , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/metabolismo , Genes Bacterianos , Modelos Moleculares , Conformación Proteica , Salmonella typhimurium/enzimología , Salmonella typhimurium/metabolismoRESUMEN
The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved 'lysine bridge' constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20-50 times reduced activity, supporting the functional importance of the 'lysine bridge'.
Asunto(s)
Proteínas Bacterianas/química , Klebsiella pneumoniae/enzimología , Oxigenasas de Función Mixta/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/ultraestructura , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Tioléster HidrolasasRESUMEN
The surface O-antigen polymers of gram-negative bacteria exhibit a modal length distribution that depends on dedicated chain length regulator periplasmic proteins (polysaccharide co-polymerases, PCPs) anchored in the inner membrane by two transmembrane helices. In an attempt to determine whether structural changes underlie the O-antigen modal length specification, we have determined the crystal structures of several closely related PCPs, namely two chimeric PCP-1 family members solved at 1.6 and 2.8 Å and a wild-type PCP-1 from Shigella flexneri solved at 2.8 Å. The chimeric proteins form circular octamers, whereas the wild-type WzzB from S. flexneri was found to be an open trimer. We also present the structure of a Wzz(FepE) mutant, which exhibits severe attenuation in its ability to produce very long O-antigen polymers. Our findings suggest that the differences in the modal length distribution depend primarily on the surface-exposed amino acids in specific regions rather than on the differences in the oligomeric state of the PCP protomers.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Antígenos O/metabolismo , Proteínas Periplasmáticas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Shigella flexneri/genética , Shigella flexneri/metabolismoRESUMEN
Microbial anaerobic and so-called hybrid pathways for degradation of aromatic compounds contain ß-oxidation-like steps. These reactions convert the product of the opening of the aromatic ring to common metabolites. The hybrid phenylacetate degradation pathway is encoded in Escherichia coli by the paa operon containing genes for 10 enzymes. Previously, we have analyzed protein-protein interactions among the enzymes catalyzing the initial oxidation steps in the paa pathway (Grishin, A. M., Ajamian, E., Tao, L., Zhang, L., Menard, R., and Cygler, M. (2011) J. Biol. Chem. 286, 10735-10743). Here we report characterization of interactions between the remaining enzymes of this pathway and show another stable complex, PaaFG, an enoyl-CoA hydratase and enoyl-Coa isomerase, both belonging to the crotonase superfamily. These steps are biochemically similar to the well studied fatty acid ß-oxidation, which can be catalyzed by individual monofunctional enzymes, multifunctional enzymes comprising several domains, or enzymatic complexes such as the bacterial fatty acid ß-oxidation complex. We have determined the structure of the PaaFG complex and determined that although individually PaaF and PaaG are similar to enzymes from the fatty acid ß-oxidation pathway, the structure of the complex is dissimilar from bacterial fatty acid ß-oxidation complexes. The PaaFG complex has a four-layered structure composed of homotrimeric discs of PaaF and PaaG. The active sites of PaaF and PaaG are adapted to accept the intermediary components of the Paa pathway, different from those of the fatty acid ß-oxidation. The association of PaaF and PaaG into a stable complex might serve to speed up the steps of the pathway following the conversion of phenylacetyl-CoA to a toxic and unstable epoxide-CoA by PaaABCE monooxygenase.