Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ArXiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38259341

RESUMEN

PURPOSE: This study quantifies the variation in dose-volume histogram (DVH) and normal tissue complication probability (NTCP) metrics for head-and-neck (HN) cancer patients when alternative organ-at-risk (OAR) delineations are used for treatment planning and for treatment plan evaluation. We particularly focus on the effects of daily patient positioning/setup variations (SV) in relation to treatment technique and delineation variability. MATERIALS AND METHODS: We generated two-arc VMAT, 5-beam IMRT, and 9-beam IMRT treatment plans for a cohort of 209 HN patients. These plans incorporated five different OAR delineation sets, including manual and four automated algorithms. Each treatment plan was assessed under various simulated per-fraction patient setup uncertainties, evaluating the potential clinical impacts through DVH and NTCP metrics. RESULTS: The study demonstrates that increasing setup variability generally reduces differences in DVH metrics between alternative delineations. However, in contrast, differences in NTCP metrics tend to increase with higher setup variability. This pattern is observed consistently across different treatment plans and delineator combinations, illustrating the intricate relationship between SV and delineation accuracy. Additionally, the need for delineation accuracy in treatment planning is shown to be case-specific and dependent on factors beyond geometric variations. CONCLUSIONS: The findings highlight the necessity for comprehensive quality assurance programs in radiotherapy, incorporating both dosimetric impact analysis and geometric variation assessment to ensure optimal delineation quality. The study emphasizes the complex dynamics of treatment planning in radiotherapy, advocating for personalized, case-specific strategies in clinical practice to enhance patient care quality and efficacy in the face of varying SV and delineation accuracies.

2.
Phys Rev E ; 104(6-1): 064213, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030850

RESUMEN

In attempts to manage spatiotemporal transient chaos in spatially extended systems, these systems are often subjected to protocols that perturb them as a whole and stabilize globally a new dynamic regime, as, for example, a uniform steady state. In this work we show that selectively perturbing only part of a system can generate space-time patterns that are not observed when controlling the whole system. Depending on the protocol used, these new patterns can emerge either in the perturbed or the unperturbed region. Specifically, we use a spatially localized time-delayed feedback scheme on the one-dimensional Gray-Scott reaction-diffusion system in the transient chaotic regime and demonstrate, through the numerical integration of the resulting kinetic equations, the stabilization of spatially localized space-time patterns that can be perfectly periodic. The mechanism underlying the observed pattern generation is related to diffusion across the interfaces separating the perturbed and unperturbed regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA