Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 142(1): 65-76, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603015

RESUMEN

DNA interstrand crosslinks (ICLs) are highly toxic because they block the progression of replisomes. The Fanconi Anemia (FA) proteins, encoded by genes that are mutated in FA, are important for repair of ICLs. The FA core complex catalyzes the monoubiquitination of FANCD2, and this event is essential for several steps of ICL repair. However, how monoubiquitination of FANCD2 promotes ICL repair at the molecular level is unknown. Here, we describe a highly conserved protein, KIAA1018/MTMR15/FAN1, that interacts with, and is recruited to sites of DNA damage by, the monoubiquitinated form of FANCD2. FAN1 exhibits endonuclease activity toward 5' flaps and has 5' exonuclease activity, and these activities are mediated by an ancient VRR_nuc domain. Depletion of FAN1 from human cells causes hypersensitivity to ICLs, defects in ICL repair, and genome instability. These data at least partly explain how ubiquitination of FANCD2 promotes DNA repair.


Asunto(s)
Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Proteína BRCA2/metabolismo , Línea Celular , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/efectos de los fármacos , Endodesoxirribonucleasas , Endonucleasas/química , Endonucleasas/metabolismo , Exodesoxirribonucleasas/química , Humanos , Datos de Secuencia Molecular , Enzimas Multifuncionales , Estructura Terciaria de Proteína , Alineación de Secuencia , Ubiquitinación
2.
Nucleic Acids Res ; 51(11): 5743-5754, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37216589

RESUMEN

ANKLE1 is a nuclease that provides a final opportunity to process unresolved junctions in DNA that would otherwise create chromosomal linkages blocking cell division. It is a GIY-YIG nuclease. We have expressed an active domain of human ANKLE1 containing the GIY-YIG nuclease domain in bacteria, that is monomeric in solution and when bound to a DNA Y-junction, and unilaterally cleaves a cruciform junction. Using an AlphaFold model of the enzyme we identify the key active residues, and show that mutation of each leads to impairment of activity. There are two components in the catalytic mechanism. Cleavage rate is pH dependent, corresponding to a pKa of 6.9, suggesting an involvement of the conserved histidine in proton transfer. The reaction rate depends on the nature of the divalent cation, likely bound by glutamate and asparagine side chains, and is log-linear with the metal ion pKa. We propose that the reaction is subject to general acid-base catalysis, using a combination of tyrosine and histidine acting as general base and water directly coordinated to the metal ion as general acid. The reaction is temperature dependent; activation energy Ea = 37 kcal mol-1, suggesting that cleavage is coupled to opening of DNA in the transition state.


Asunto(s)
ADN , Endonucleasas , Humanos , ADN/química , Endonucleasas/metabolismo , Histidina/genética , Mutación
3.
Nat Chem Biol ; 15(3): 269-275, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30664685

RESUMEN

Holliday junction (HJ) resolution by resolving enzymes is essential for chromosome segregation and recombination-mediated DNA repair. HJs undergo two types of structural dynamics that determine the outcome of recombination: conformer exchange between two isoforms and branch migration. However, it is unknown how the preferred branch point and conformer are achieved between enzyme binding and HJ resolution given the extensive binding interactions seen in static crystal structures. Single-molecule fluorescence resonance energy transfer analysis of resolving enzymes from bacteriophages (T7 endonuclease I), bacteria (RuvC), fungi (GEN1) and humans (hMus81-Eme1) showed that both types of HJ dynamics still occur after enzyme binding. These dimeric enzymes use their multivalent interactions to achieve this, going through a partially dissociated intermediate in which the HJ undergoes nearly unencumbered dynamics. This evolutionarily conserved property of HJ resolving enzymes provides previously unappreciated insight on how junction resolution, conformer exchange and branch migration may be coordinated.


Asunto(s)
ADN Cruciforme/metabolismo , ADN Cruciforme/fisiología , Resolvasas de Unión Holliday/metabolismo , Animales , Proteínas de Arabidopsis , Segregación Cromosómica/genética , Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Desoxirribonucleasa I , Endodesoxirribonucleasas , Endonucleasas , Proteínas de Escherichia coli , Transferencia Resonante de Energía de Fluorescencia/métodos , Resolvasas de Unión Holliday/fisiología , Humanos , Unión Proteica , Recombinación Genética/genética , Imagen Individual de Molécula/métodos , Especificidad por Sustrato
4.
Mol Cell ; 52(2): 221-33, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24076219

RESUMEN

Holliday junctions (HJs) are X-shaped DNA structures that arise during homologous recombination, which must be removed to enable chromosome segregation. The SLX1 and MUS81-EME1 nucleases can both process HJs in vitro, and they bind in close proximity on the SLX4 scaffold, hinting at possible cooperation. However, the cellular roles of mammalian SLX1 are not yet known. Here, we use mouse genetics and structure function analysis to investigate SLX1 function. Disrupting the murine Slx1 and Slx4 genes revealed that they are essential for HJ resolution in mitotic cells. Moreover, SLX1 and MUS81-EME1 act together to resolve HJs in a manner that requires tethering to SLX4. We also show that SLX1, like MUS81-EME1, is required for repair of DNA interstrand crosslinks, but this role appears to be independent of HJ cleavage, at least in mouse cells. These findings shed light on HJ resolution in mammals and on maintenance of genome stability.


Asunto(s)
Reparación del ADN , ADN Cruciforme , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Genéticos , Datos de Secuencia Molecular , Unión Proteica , Interferencia de ARN , Recombinasas/genética , Recombinasas/metabolismo , Homología de Secuencia de Aminoácido
5.
Nucleic Acids Res ; 46(20): 11089-11098, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30247722

RESUMEN

GEN1 is a member of the FEN/EXO family of structure-selective nucleases that cleave 1 nt 3' to a variety of branchpoints. For each, the H2TH motif binds a monovalent ion and plays an important role in binding one helical arm of the substrates. We investigate here the importance of this metal ion on substrate specificity and GEN1 structure. In the presence of K+ ions the substrate specificity is wider than in Na+, yet four-way junctions remain the preferred substrate. In a combination of K+ and Mg2+ second strand cleavage is accelerated 17-fold, ensuring bilateral cleavage of the junction. We have solved crystal structures of Chaetomium thermophilum GEN1 with Cs+, K+ and Na+ bound. With bound Cs+ the loop of the H2TH motif extends toward the active site so that D199 coordinates a Mg2+, buttressed by an interaction of the adjacent Y200. With the lighter ions bound the H2TH loop changes conformation and retracts away from the active site. We hypothesize this conformational change might play a role in second strand cleavage acceleration.


Asunto(s)
Chaetomium/enzimología , ADN de Hongos/metabolismo , Resolvasas de Unión Holliday/química , Resolvasas de Unión Holliday/metabolismo , Dominios y Motivos de Interacción de Proteínas , Dominio Catalítico/genética , Chaetomium/genética , Chaetomium/metabolismo , Clonación Molecular , Cristalografía por Rayos X , División del ADN , ADN Cruciforme/metabolismo , Escherichia coli , Resolvasas de Unión Holliday/genética , Iones/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Especificidad por Sustrato/genética
6.
Mol Cell ; 35(1): 116-27, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19595721

RESUMEN

Budding yeast Slx4 interacts with the structure-specific endonuclease Slx1 to ensure completion of ribosomal DNA replication. Slx4 also interacts with the Rad1-Rad10 endonuclease to control cleavage of 3' flaps during repair of double-strand breaks (DSBs). Here we describe the identification of human SLX4, a scaffold for DNA repair nucleases XPF-ERCC1, MUS81-EME1, and SLX1. SLX4 immunoprecipitates show SLX1-dependent nuclease activity toward Holliday junctions and MUS81-dependent activity toward other branched DNA structures. Furthermore, SLX4 enhances the nuclease activity of SLX1, MUS81, and XPF. Consistent with a role in processing recombination intermediates, cells depleted of SLX4 are hypersensitive to genotoxins that cause DSBs and show defects in the resolution of interstrand crosslink-induced DSBs. Depletion of SLX4 causes a decrease in DSB-induced homologous recombination. These data show that SLX4 is a regulator of structure-specific nucleases and that SLX4 and SLX1 are important regulators of genome stability in human cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Endonucleasas/metabolismo , Recombinasas/metabolismo , Western Blotting , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Unión Proteica , ARN Interferente Pequeño/genética , Recombinasas/genética , Transfección , Técnicas del Sistema de Dos Híbridos
7.
Biochemistry ; 55(30): 4166-72, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387136

RESUMEN

The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7-10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2-12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography.


Asunto(s)
Bacteriófago T7/enzimología , ADN Cruciforme/química , ADN Cruciforme/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Bacteriófago T7/genética , Desoxirribonucleasa I/genética , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética
8.
Nat Struct Mol Biol ; 31(3): 523-535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238586

RESUMEN

Histone chaperones control nucleosome density and chromatin structure. In yeast, the H3-H4 chaperone Spt2 controls histone deposition at active genes but its roles in metazoan chromatin structure and organismal physiology are not known. Here we identify the Caenorhabditis elegans ortholog of SPT2 (CeSPT-2) and show that its ability to bind histones H3-H4 is important for germline development and transgenerational epigenetic gene silencing, and that spt-2 null mutants display signatures of a global stress response. Genome-wide profiling showed that CeSPT-2 binds to a range of highly expressed genes, and we find that spt-2 mutants have increased chromatin accessibility at a subset of these loci. We also show that SPT2 influences chromatin structure and controls the levels of soluble and chromatin-bound H3.3 in human cells. Our work reveals roles for SPT2 in controlling chromatin structure and function in Metazoa.


Asunto(s)
Proteínas de Unión al ADN , Chaperonas de Histonas , Animales , Humanos , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
EMBO J ; 28(6): 641-51, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19197240

RESUMEN

The ability of the telomeric DNA-binding protein, TRF2, to stimulate t-loop formation while preventing t-loop deletion is believed to be crucial to maintain telomere integrity in mammals. However, little is known on the molecular mechanisms behind these properties of TRF2. In this report, we show that TRF2 greatly increases the rate of Holliday junction (HJ) formation and blocks the cleavage by various types of HJ resolving activities, including the newly identified human GEN1 protein. By using potassium permanganate probing and differential scanning calorimetry, we reveal that the basic domain of TRF2 induces structural changes to the junction. We propose that TRF2 contributes to t-loop stabilisation by stimulating HJ formation and by preventing resolvase cleavage. These findings provide novel insights into the interplay between telomere protection and homologous recombination and suggest a general model in which TRF2 maintains telomere integrity by controlling the turnover of HJ at t-loops and at regressed replication forks.


Asunto(s)
ADN Cruciforme/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Bacterias/enzimología , Emparejamiento Base , Secuencia de Bases , Bioensayo , Histidina/metabolismo , Resolvasas de Unión Holliday/metabolismo , Humanos , Datos de Secuencia Molecular , Permanganato de Potasio/farmacología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Recombinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteína 2 de Unión a Repeticiones Teloméricas/química
10.
Nature ; 449(7162): 621-4, 2007 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-17873858

RESUMEN

The four-way (Holliday) DNA junction is the central intermediate in homologous recombination, a ubiquitous process that is important in DNA repair and generation of genetic diversity. The penultimate stage of recombination requires resolution of the DNA junction into nicked-duplex species by the action of a junction-resolving enzyme, examples of which have been identified in a wide variety of organisms. These enzymes are nucleases that are highly selective for the structure of branched DNA. The mechanism of this selectivity has, however, been unclear in the absence of structural data. Here we present the crystal structure of the junction-resolving enzyme phage T7 endonuclease I in complex with a synthetic four-way DNA junction. Although the enzyme is structure-selective, significant induced fit occurs in the interaction, with changes in the structure of both the protein and the junction. The dimeric enzyme presents two binding channels that contact the backbones of the junction's helical arms over seven nucleotides. These interactions effectively measure the relative orientations and positions of the arms of the junction, thereby ensuring that binding is selective for branched DNA that can achieve this geometry.


Asunto(s)
Bacteriófago T7/enzimología , ADN Cruciforme/química , ADN Cruciforme/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Resolvasas de Unión Holliday/química , Resolvasas de Unión Holliday/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , ADN Cruciforme/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica
11.
PLoS Genet ; 6(7): e1001025, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20661466

RESUMEN

DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR), which can involve Holliday junction (HJ) intermediates that are ultimately resolved by nucleolytic enzymes. An N-terminal fragment of human GEN1 has recently been shown to act as a Holliday junction resolvase, but little is known about the role of GEN-1 in vivo. Holliday junction resolution signifies the completion of DNA repair, a step that may be coupled to signaling proteins that regulate cell cycle progression in response to DNA damage. Using forward genetic approaches, we identified a Caenorhabditis elegans dual function DNA double-strand break repair and DNA damage signaling protein orthologous to the human GEN1 Holliday junction resolving enzyme. GEN-1 has biochemical activities related to the human enzyme and facilitates repair of DNA double-strand breaks, but is not essential for DNA double-strand break repair during meiotic recombination. Mutational analysis reveals that the DNA damage-signaling function of GEN-1 is separable from its role in DNA repair. GEN-1 promotes germ cell cycle arrest and apoptosis via a pathway that acts in parallel to the canonical DNA damage response pathway mediated by RPA loading, CHK1 activation, and CEP-1/p53-mediated apoptosis induction. Furthermore, GEN-1 acts redundantly with the 9-1-1 complex to ensure genome stability. Our study suggests that GEN-1 might act as a dual function Holliday junction resolvase that may coordinate DNA damage signaling with a late step in DNA double-strand break repair.


Asunto(s)
Caenorhabditis elegans/genética , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Resolvasas de Unión Holliday/fisiología , Animales , Apoptosis , Ciclo Celular , Inestabilidad Genómica , Células Germinativas , Resolvasas de Unión Holliday/genética , Meiosis , Transducción de Señal/genética
12.
Nat Commun ; 13(1): 5921, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207294

RESUMEN

Resolution of Holliday junctions is a critical intermediate step of homologous recombination in which junctions are processed by junction-resolving endonucleases. Although binding and cleavage are well understood, the question remains how the enzymes locate their substrate within long duplex DNA. Here we track fluorescent dimers of endonuclease I on DNA, presenting the complete single-molecule reaction trajectory for a junction-resolving enzyme finding and cleaving a Holliday junction. We show that the enzyme binds remotely to dsDNA and then undergoes 1D diffusion. Upon encountering a four-way junction, a catalytically-impaired mutant remains bound at that point. An active enzyme, however, cleaves the junction after a few seconds. Quantitative analysis provides a comprehensive description of the facilitated diffusion mechanism. We show that the eukaryotic junction-resolving enzyme GEN1 also undergoes facilitated diffusion on dsDNA until it becomes located at a junction, so that the general resolution trajectory is probably applicable to many junction resolving enzymes.


Asunto(s)
ADN Cruciforme , ADN , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Conformación de Ácido Nucleico
13.
Curr Opin Struct Biol ; 18(1): 86-95, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18160275

RESUMEN

Junction-resolving enzymes are nucleases that exhibit structural selectivity for the four-way (Holliday) junction in DNA. In general, these enzymes both recognize and distort the structure of the junction. New insight into the molecular recognition processes has been provided by two recent co-crystal structures of resolving enzymes bound to four-way DNA junctions in highly contrasting ways. T4 endonuclease VII binds the junction in an open conformation to an approximately flat binding surface whereas T7 endonuclease I envelops the junction, which retains a much more three-dimensional structure. Both proteins make contacts with the DNA backbone over an extensive area in order to generate structural specificity. The comparison highlights the versatility of Holliday junction resolution, and extracts some general principles of recognition.


Asunto(s)
ADN Cruciforme/química , Resolvasas de Unión Holliday/química , Resolvasas de Unión Holliday/metabolismo , Animales , Sitios de Unión , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/metabolismo , ADN Cruciforme/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica
14.
Methods Enzymol ; 600: 543-568, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29458774

RESUMEN

Four-way Holliday junctions in DNA are the central intermediates of genetic recombination and must be processed into regular duplex species. One mechanism for achieving this is called resolution, brought about by structure-selective nucleases. GEN1 is an important junction-resolving enzyme in eukaryotic cells, a member of the FEN1/EXO1 superfamily of nucleases. While human GEN1 is difficult to work with because of aggregation, orthologs from thermophilic fungi have been identified using bioinformatics and have proved to have excellent properties. Here, the expression and purification of this enzyme from Chaetomium thermophilum is described, together with the means of investigating its biochemical properties. The enzyme is quite similar to junction-resolving enzymes from lower organisms, binding to junctions in dimeric form, introducing symmetrical bilateral cleavages, the second of which is accelerated to promote productive resolution. Crystallization of C. thermophilum GEN1 is described, and the structure of a DNA-product complex. Juxtaposition of complexes in the crystal lattice suggests how the structure of a dimeric enzyme with an intact junction is organized.


Asunto(s)
Chaetomium/genética , ADN Cruciforme/química , Pruebas de Enzimas/métodos , Proteínas Fúngicas/química , Resolvasas de Unión Holliday/química , Chaetomium/metabolismo , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Pruebas de Enzimas/instrumentación , Proteínas Fúngicas/aislamiento & purificación , Resolvasas de Unión Holliday/aislamiento & purificación , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
15.
J Mol Biol ; 359(5): 1261-76, 2006 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16690083

RESUMEN

Resolving enzymes bind highly selectively to four-way DNA junctions, but the mechanism of this structural specificity is poorly understood. In this study, we have explored the role of interactions between the dimeric enzyme and the helical arms of the junction, using junctions with either shortened arms, or circular permutation of arms. We find that DNA-protein contacts in the arms containing the 5' ends of the continuous strands are very important, conferring a significant level of sequence discrimination upon both the choice of conformer and the order of strand cleavage. We have exploited these properties to obtain hydroxyl radical footprinting data on endonuclease I-junction complexes that are not complicated by the presence of alternative conformers, with results that are in good agreement with the arm permutation and shortening experiments. Substitution of phosphate groups at the center of the junction reveals the importance of electrostatic interactions at the point of strand exchange in the complex. Our data show that the form of the complex between endonuclease I and a DNA junction depends on the core of the junction and on interactions with the first six base-pairs of the arms containing the 5' ends of the continuous strands.


Asunto(s)
Bacteriófago T7/enzimología , ADN Cruciforme/química , ADN Cruciforme/metabolismo , Desoxirribonucleasa I/metabolismo , Resolvasas de Unión Holliday/química , Resolvasas de Unión Holliday/metabolismo , Secuencia de Bases , Huella de ADN , ADN Circular/química , ADN Cruciforme/genética , Desoxirribonucleasa I/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Compuestos Organofosforados/metabolismo , Unión Proteica , Especificidad por Sustrato
16.
Chem Biol ; 12(2): 217-28, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15734649

RESUMEN

Conversion of a centrally located phosphate group to an electrically neutral methyl phosphonate in a four-way DNA junction can exert a major influence on its conformation. However, the effect is strongly dependent on stereochemistry. Substitution of the proR oxygen atom by methyl leads to conformational transition to the stacking conformer that places this phosphate at the point of strand exchange. By contrast, corresponding modification of the proS oxygen destabilizes this conformation of the junction. Single-molecule analysis shows that both molecules are in a dynamic equilibrium between alternative stacking conformers, but the configuration of the methyl phosphonate determines the bias of the conformational equilibrium. It is likely that the stereochemical environment of the methyl group affects the interaction with metal ions in the center of the junction.


Asunto(s)
ADN/química , ADN/ultraestructura , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Organofosfonatos , Estereoisomerismo
17.
J Mol Biol ; 333(1): 59-73, 2003 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-14516743

RESUMEN

Endonuclease I of bacteriophage T7 is a DNA junction-resolving enzyme. We have previously used crystallography to demonstrate the binding of two manganese ions into the active site that is formed by three carboxylate (Glu 20, Asp 55 and Glu 65) and a lysine residue (Lys 67). Endonuclease I is active in the presence of magnesium, manganese, iron (II) and cobalt (II) ions, weakly active in the presence of nickel, copper (II) and zinc ions, and completely inactive in the presence of calcium ions. However, using calorimetry, we have observed the binding of two calcium ions to the free enzyme in a manner very similar to the binding of manganese ions. In the presence of iron (II) ions, we have obtained a cleavage of the continuous strands of a junction bound by endonuclease I, at sites close to (but not identical with) enzyme-induced hydrolysis. The results suggest that this arises from attack by locally generated hydroxyl radicals, arising from iron (II) ions bound into the active site. This therefore provides an indirect way of examining metal ion binding in the enzyme-junction complex. Ion binding in free protein (by calorimetry) and the enzyme-junction complex (iron-induced cleavage) have been studied in series of active-site mutants. Both confirm the importance of the three carboxylate ligands, and the lack of a requirement for Lys67 for the ion binding. Calorimetry points to particularly critical role of Asp55, as mutation completely abolishes all binding of both manganese and calcium ions.


Asunto(s)
Calcio/metabolismo , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Hierro/metabolismo , Bacteriófago T7/enzimología , Sitios de Unión , Calorimetría
18.
J Mol Biol ; 343(4): 851-64, 2004 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-15476805

RESUMEN

The structure and dynamics of the four-way (Holliday) junction are strongly dependent on the presence of metal ions. In this study, the importance of phosphate charge in and around the point of strand exchange has been explored by selective replacement with electrically neutral methyl phosphonate groups, guided by crystal structures of the junction in the folded, stacked X conformation. Junction conformation has been analysed by comparative gel electrophoresis and fluorescence resonance energy transfer (FRET). Three of sets of phosphate groups on the exchanging strands have been analysed; those at the point of strand exchange and those to their 3' and 5' sides. The exchanging and 3' phosphate groups form a box of negatively charged groups on the minor groove face of the junction, while the 5' phosphate groups face each other on the major groove side, with their proR oxygen atoms directed at one another. The largest effects are observed on substitution of the exchanging phosphate groups; replacement of both groups leads to the loss of the requirement for addition of metal ions to allow junction folding. When the equivalent phosphate groups on the continuous strands were substituted, a proportion of the junction folded into the alternative conformer so as to bring these phosphate groups onto the exchanging strands. These species did not interconvert, and thus this is likely to result from the alternative diasteromeric forms of the methyl phosphonate group. This shows that some of the conformational effects result from more than purely electrostatic interactions. Smaller but significant effects were observed on substitution of the flanking phosphate groups. All methyl phosphonate substitutions at these positions allowed folding to proceed at a reduced concentration of magnesium ions, with double substitutions more effective than single substitutions. Substitution of 5' phosphates resulted in a greater degree of folding at a given ionic concentration compared to the corresponding 3' phosphate substitutions. These results show that the phosphate groups at the point of strand exchange exert the largest electrostatic effect on junction folding, but a number of phosphate groups in the vicinity of the exchange region contribute to the overall effects.


Asunto(s)
ADN Cruciforme/metabolismo , Conformación de Ácido Nucleico , Organofosfonatos/metabolismo , ADN Cruciforme/química , Electroforesis en Gel de Poliacrilamida , Magnesio/metabolismo , Electricidad Estática
19.
Cell Rep ; 13(11): 2565-2575, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26686639

RESUMEN

We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction.


Asunto(s)
ADN/metabolismo , Proteínas Fúngicas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Sitios de Unión , Dominio Catalítico , Chaetomium/genética , Chaetomium/metabolismo , Cristalografía por Rayos X , ADN/química , Proteínas Fúngicas/química , Resolvasas de Unión Holliday/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
20.
J Mol Biol ; 426(24): 3946-3959, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25315822

RESUMEN

Processing of Holliday junctions is essential in recombination. We have identified the gene for the junction-resolving enzyme GEN1 from the thermophilic fungus Chaetomium thermophilum and expressed the N-terminal 487-amino-acid section. The protein is a nuclease that is highly selective for four-way DNA junctions, cleaving 1nt 3' to the point of strand exchange on two strands symmetrically disposed about a diagonal axis. CtGEN1 binds to DNA junctions as a discrete homodimer with nanomolar affinity. Analysis of the kinetics of cruciform cleavage shows that cleavage of the second strand occurs an order of magnitude faster than the first cleavage so as to generate a productive resolution event. All these properties are closely similar to those described for bacterial, phage and mitochondrial junction-resolving enzymes. CtGEN1 is also similar in properties to the human enzyme but lacks the problems with aggregation that currently prevent detailed analysis of the latter protein. CtGEN1 is thus an excellent enzyme with which to engage in biophysical and structural analysis of eukaryotic GEN1.


Asunto(s)
Chaetomium/enzimología , ADN Cruciforme/metabolismo , Proteínas Fúngicas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Algoritmos , Secuencia de Aminoácidos , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Secuencia de Bases , Unión Competitiva , Chaetomium/genética , ADN Cruciforme/química , ADN Cruciforme/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Resolvasas de Unión Holliday/clasificación , Resolvasas de Unión Holliday/genética , Hidrólisis , Cinética , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Filogenia , Unión Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA