Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Platelets ; 31(6): 801-811, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31948362

RESUMEN

Platelets are essential for normal hemostasis; however, pathological conditions can also trigger unwanted platelet activation precipitating thrombosis and ischemic damage of vital organs such as the heart or brain. Glycoprotein (GP)VI- and C-type lectin-like receptor 2 (CLEC-2)-mediated (hem)immunoreceptor tyrosine-based activation motif (ITAM) signaling represents a major pathway for platelet activation. The two members of the Growth-factor receptor-bound protein 2 (Grb2) family of adapter proteins expressed in platelets - Grb2 and Grb2-related adapter protein downstream of Shc (Gads) - are part of the hem(ITAM) signaling cascade by forming an adapter protein complex with linker for activation of T cells (LAT). To date, a possible functional redundancy between these two adapters in platelet activation has not been investigated. We here generated megakaryocyte- and platelet-specific Grb2/Gads double knockout (DKO) mice and analyzed their platelet function in vitro and in vivo. The DKO platelets exhibited virtually abolished (hem)ITAM signaling whereas only partial defects were seen in Grb2 or Gads single-deficient platelets. This was based on impaired phosphorylation of key molecules in the (hem)ITAM signaling cascade and translated into impaired hemostasis and partially defective arterial thrombosis, thereby exceeding the defects in either Grb2 KO or Gads KO mice. Despite this severe (hem)ITAM signaling defect, CLEC-2 dependent regulation of blood-lymphatic vessel separation was not affected in the DKO animals. These results provide direct evidence for critically redundant roles of Grb2 and Gads for platelet function in hemostasis and thrombosis, but not development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Adaptadora GRB2/metabolismo , Motivo de Activación del Inmunorreceptor Basado en Tirosina/genética , Animales , Humanos , Ratones , Transducción de Señal
2.
Circ Res ; 114(3): 444-453, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24265393

RESUMEN

RATIONALE: Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. OBJECTIVE: We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. METHODS AND RESULTS: Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI-mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2-mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein-coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2-induced G protein-coupled receptor signaling pathways. CONCLUSIONS: These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.


Asunto(s)
Plaquetas/metabolismo , Proteína Adaptadora GRB2/fisiología , Motivo de Activación del Inmunorreceptor Basado en Tirosina/genética , Transducción de Señal/genética , Secuencias de Aminoácidos/genética , Animales , Células Cultivadas , Proteína Adaptadora GRB2/genética , Hemostasis/genética , Motivo de Inhibición del Inmunorreceptor Basado en Tirosina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria/genética , Trombosis/genética
3.
Blood ; 122(18): 3178-87, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23861250

RESUMEN

Blood platelets are anuclear cell fragments that are essential for blood clotting. Platelets are produced by bone marrow megakaryocytes (MKs), which extend protrusions, or so-called proplatelets, into bone marrow sinusoids. Proplatelet formation requires a profound reorganization of the MK actin and tubulin cytoskeleton. Rho GTPases, such as RhoA, Rac1, and Cdc42, are important regulators of cytoskeletal rearrangements in platelets; however, the specific roles of these proteins during platelet production have not been established. Using conditional knockout mice, we show here that Rac1 and Cdc42 possess redundant functions in platelet production and function. In contrast to a single-deficiency of either protein, a double-deficiency of Rac1 and Cdc42 in MKs resulted in macrothrombocytopenia, abnormal platelet morphology, and impaired platelet function. Double-deficient bone marrow MKs matured normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and structure were barely affected. Together, these results suggest that the combined action of Rac1 and Cdc42 is crucial for platelet production, particularly by regulating microtubule dynamics.


Asunto(s)
Células Progenitoras de Megacariocitos/metabolismo , Megacariocitos/metabolismo , Tubulina (Proteína)/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética , Animales , Western Blotting , Citoesqueleto/metabolismo , Hemostasis/genética , Células Progenitoras de Megacariocitos/citología , Megacariocitos/citología , Megacariocitos/ultraestructura , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microtúbulos/metabolismo , Seudópodos/genética , Seudópodos/metabolismo , Trombocitopenia/sangre , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombosis/sangre , Trombosis/genética , Trombosis/metabolismo , Proteína de Unión al GTP cdc42/deficiencia , Proteína de Unión al GTP rac1/deficiencia
4.
Blood ; 120(17): 3594-602, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22936655

RESUMEN

The crucial function of blood platelets in hemostasis is to prevent blood loss by stable thrombus formation. This process is driven by orchestrated mechanisms including several signal transduction cascades and morphologic transformations. The cytoplasmic microtubule modulator RanBP10 is a Ran and ß1-tubulin binding protein that is essential for platelet granule release and mice lacking RanBP10 harbor a severe bleeding phenotype. In this study, we demonstrate that RanBP10-nullizygous platelets show normal adhesion on collagen and von Willebrand factor under flow conditions. However, using a ferric chloride-induced arterial thrombosis model, the formation of stable thrombi was significantly impaired, preventing vessel occlusion or leading to recanalization and thromboembolization. Delta-granule secretion was normal in mutant mice, whereas platelet shape change in aggregometry was attenuated. Lack of RanBP10 leads to increased ß1-tubulin protein, which drives α-monomers into polymerized microtubules. In mutant platelets agonists failed to contract the peripheral marginal band or centralize granules. Pretreatment of wild-type platelets with taxol caused microtubule stabilization and phenocopied the attenuated shape change in response to collagen, suggesting that RanBP10 inhibits premature microtubule polymerization of ß1-tubulin and plays a pivotal role in thrombus stabilization.


Asunto(s)
Plaquetas/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Trombosis/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Arterias/metabolismo , Arterias/patología , Plaquetas/efectos de los fármacos , Plaquetas/patología , Cloruros , Colágeno/metabolismo , Gránulos Citoplasmáticos , Compuestos Férricos , Expresión Génica/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/deficiencia , Hemorreología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Paclitaxel/farmacología , Activación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Polimerizacion , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Trombosis/inducido químicamente , Trombosis/genética , Tubulina (Proteína)/genética , Factor de von Willebrand/metabolismo
5.
J Immunol ; 184(7): 3665-76, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20194721

RESUMEN

Compartmentalization of the BCR in membrane rafts is important for its signaling capacity. Swiprosin-1/EFhd2 (Swip-1) is an EF-hand and coiled-coil-containing adaptor protein with predicted Src homology 3 (SH3) binding sites that we identified in membrane rafts. We showed previously that Swip-1 amplifies BCR-induced apoptosis; however, the mechanism of this amplification was unknown. To address this question, we overexpressed Swip-1 and found that Swip-1 amplified the BCR-induced calcium flux in WEHI231, B62.1, and Bal17 cells. Conversely, the BCR-elicited calcium flux was strongly attenuated in Swip-1-silenced WEHI231 cells, and this was due to a decreased calcium mobilization from intracellular stores. Complementation of Swip-1 expression in Swip-1-silenced WEHI231 cells restored the BCR-induced calcium flux and enhanced spleen tyrosine kinase (Syk) tyrosine phosphorylation and activity as well as SLP65/BLNK/BASH and phospholipase C gamma2 (PLCgamma2) tyrosine phosphorylation. Furthermore, Swip-1 induced the constitutive association of the BCR itself, Syk, and PLCgamma2 with membrane rafts. Concomitantly, Swip-1 stabilized the association of BCR with tyrosine-phosphorylated proteins, specifically Syk and PLCgamma2, and enhanced the constitutive interaction of Syk and PLCgamma2 with Lyn. Interestingly, Swip-1 bound to the rSH3 domains of the Src kinases Lyn and Fgr, as well as to that of PLCgamma. Deletion of the predicted SH3-binding region in Swip-1 diminished its association and that of Syk and PLCgamma2 with membrane rafts, reduced its interaction with the SH3 domain of PLCgamma, and diminished the BCR-induced calcium flux. Hence, Swip-1 provides a membrane scaffold that is required for the Syk-, SLP-65-, and PLCgamma2-dependent BCR-induced calcium flux.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Microdominios de Membrana/inmunología , Fosfolipasa C gamma/inmunología , Proteínas Tirosina Quinasas/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Western Blotting , Proteínas de Unión al Calcio , Línea Celular , Separación Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Activación de Linfocitos/inmunología , Microdominios de Membrana/metabolismo , Ratones , Fosfolipasa C gamma/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Quinasa Syk
6.
Blood Adv ; 6(17): 5184-5197, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35819450

RESUMEN

Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.


Asunto(s)
Megacariocitos , Trombocitopenia , Proteína de Unión al GTP rhoB/metabolismo , Animales , Plaquetas/metabolismo , Megacariocitos/metabolismo , Ratones , Microtúbulos/metabolismo , Trombocitopenia/genética , Tubulina (Proteína)/metabolismo
7.
Cell Commun Signal ; 9: 2, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21244694

RESUMEN

Changes in the intracellular calcium concentration govern cytoskeletal rearrangement, mitosis, apoptosis, transcriptional regulation or synaptic transmission, thereby, regulating cellular effector and organ functions. Calcium binding proteins respond to changes in the intracellular calcium concentration with structural changes, triggering enzymatic activation and association with downstream proteins. One type of calcium binding proteins are EF-hand super family proteins. Here, we describe two recently discovered homologous EF-hand containing adaptor proteins, Swiprosin-1/EF-hand domain containing 2 (EFhd2) and Swiprosin-2/EF-hand domain containing 1 (EFhd1), which are related to allograft inflammatory factor-1 (AIF-1). For reasons of simplicity and concision we propose to name Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1 from now on EFhd2 and EFhd1, according to their respective gene symbols. AIF-1 and Swiprosin-1/EFhd2 are already present in Bilateria, for instance in Drosophila melanogaster and Caenhorhabditis elegans. Swiprosin-2/EFhd1 arose later from gene duplication in the tetrapodal lineage. Secondary structure prediction of AIF-1 reveals disordered regions and one functional EF-hand. Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1 exhibit a disordered region at the N-terminus, followed by two EF-hands and a coiled-coil domain. Whereas both proteins are similar in their predicted overall structure they differ in a non-homologous stretch of 60 amino acids just in front of the EF-hands. AIF-1 controls calcium-dependent cytoskeletal rearrangement in innate immune cells by means of its functional EF-hand. We propose that Swiprosin-1/EFhd2 as well is a cytoskeleton associated adaptor protein involved in immune and brain cell function. Pro-inflammatory conditions are likely to modulate expression and function of Swiprosin-1/EFhd2. Swiprosin-2/EFhd1, on the other hand, modulates apoptosis and differentiation of neuronal and muscle precursor cells, probably through an association with mitochondria. We suggest furthermore that Swiprosin-2/EFhd1 is part of a cellular response to oxidative stress, which could explain its pro-survival activity in neuronal, muscle and perhaps some malignant tissues.

8.
Curr Biol ; 31(10): 2051-2064.e8, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33711252

RESUMEN

Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbß3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adhesión Celular , Movimiento Celular , Integrinas/metabolismo , Macrófagos/metabolismo , Fagocitosis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Quinasa 1 de Adhesión Focal/metabolismo , Masculino , Ratones , Paxillin/metabolismo , Fosforilación , Seudópodos
9.
Cell Rep ; 35(6): 109102, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979620

RESUMEN

Megakaryocytes (MKs), the precursors of blood platelets, are large, polyploid cells residing mainly in the bone marrow. We have previously shown that balanced signaling of the Rho GTPases RhoA and Cdc42 is critical for correct MK localization at bone marrow sinusoids in vivo. Using conditional RhoA/Cdc42 double-knockout (DKO) mice, we reveal here that RhoA/Cdc42 signaling is dispensable for the process of polyploidization in MKs but essential for cytoplasmic MK maturation. Proplatelet formation is virtually abrogated in the absence of RhoA/Cdc42 and leads to severe macrothrombocytopenia in DKO animals. The MK maturation defect is associated with downregulation of myosin light chain 2 (MLC2) and ß1-tubulin, as well as an upregulation of LIM kinase 1 and cofilin-1 at both the mRNA and protein level and can be linked to impaired MKL1/SRF signaling. Our findings demonstrate that MK endomitosis and cytoplasmic maturation are separately regulated processes, and the latter is critically controlled by RhoA/Cdc42.


Asunto(s)
Citoplasma/metabolismo , Megacariocitos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Humanos , Ratones , Transducción de Señal
11.
Cell Death Differ ; 24(7): 1239-1252, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28524857

RESUMEN

B-cell development in the bone marrow comprises proliferative and resting phases in different niches. We asked whether B-cell metabolism relates to these changes. Compared to pro B and small pre B cells, large pre B cells revealed the highest glucose uptake and ROS but not mitochondrial mass, whereas small pre B cells exhibited the lowest mitochondrial membrane potential. Small pre B cells from Rag1-/-;33.C9 µ heavy chain knock-in mice revealed decreased glycolysis (ECAR) and mitochondrial spare capacity compared to pro B cells from Rag1-/- mice. We were interested in the step regulating this metabolic switch from pro to pre B cells and uncovered that Swiprosin-2/EFhd1, a Ca2+-binding protein of the inner mitochondrial membrane involved in Ca2+-induced mitoflashes, is expressed in pro B cells, but downregulated by surface pre B-cell receptor expression. Knockdown and knockout of EFhd1 in 38B9 pro B cells decreased the oxidative phosphorylation/glycolysis (OCR/ECAR) ratio by increasing glycolysis, glycolytic capacity and reserve. Prolonged expression of EFhd1 in EFhd1 transgenic mice beyond the pro B cell stage increased expression of the mitochondrial co-activator PGC-1α in primary pre B cells, but reduced mitochondrial ATP production at the pro to pre B cell transition in IL-7 cultures. Transgenic EFhd1 expression caused a B-cell intrinsic developmental disadvantage for pro and pre B cells. Hence, coordinated expression of EFhd1 in pro B cells and by the pre BCR regulates metabolic changes and pro/pre B-cell development.


Asunto(s)
Linfocitos B/citología , Linfocitos B/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Línea Celular , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Genes Mitocondriales , Metaboloma , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Consumo de Oxígeno , Receptores de Antígenos de Linfocitos B/metabolismo
12.
Nat Commun ; 8(1): 127, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743899

RESUMEN

In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts.Megakaryocyte maturation is thought to occur as the cells migrate from a vessel-distant (endosteal) niche to the vessel within the bone. Here, the authors show that megakaryocytes represent largely sessile cells in close contact with the vasculature and homogeneously distributed in the bone marrow.


Asunto(s)
Vasos Sanguíneos/fisiología , Médula Ósea/irrigación sanguínea , Movimiento Celular/fisiología , Megacariocitos/fisiología , Trombopoyesis/fisiología , Animales , Plaquetas/citología , Plaquetas/metabolismo , Plaquetas/fisiología , Vasos Sanguíneos/metabolismo , Médula Ósea/metabolismo , Movimiento Celular/genética , Células Cultivadas , Microscopía Intravital , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Adhesividad Plaquetaria/genética , Adhesividad Plaquetaria/fisiología , Trombopoyesis/genética
13.
Nat Commun ; 8: 15838, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28643773

RESUMEN

Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.


Asunto(s)
Plaquetas/enzimología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Plaquetas/citología , Polaridad Celular , Células Endoteliales/citología , Células Endoteliales/enzimología , Femenino , Humanos , Megacariocitos/citología , Megacariocitos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rhoA/genética
14.
Thromb Res ; 133 Suppl 2: S149-57, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24862136

RESUMEN

Cancer-associated mortality is frequently caused by metastasis, however, our understanding of this process remains incomplete and therapeutic options are limited. Metastasis is a dynamic multi-step process involving intravasation of tumor cells into the host's blood and lymphatic vessels, their dissemination within the circulation, and finally arrest and extravasation in a distant organ where they establish secondary tumors. It is generally conceived that platelets contribute to all steps of hematogenous tumor dissemination. In this review, we provide an overview of the current knowledge of the platelet receptors involved in tumor cell-induced platelet aggregation, an essential immune surveillance escape mechanism of circulating tumor cells. We discuss how platelets prevent immunological attack, contribute to tumor cell extravasation and thereby facilitate colonization of distant organs.


Asunto(s)
Plaquetas/fisiología , Metástasis de la Neoplasia/fisiopatología , Células Neoplásicas Circulantes/metabolismo , Agregación Plaquetaria/fisiología , Plaquetas/inmunología , Humanos , Metástasis de la Neoplasia/inmunología , Células Neoplásicas Circulantes/inmunología , Agregación Plaquetaria/inmunología
15.
PLoS One ; 9(9): e107139, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243606

RESUMEN

BACKGROUND: Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity, but may also cause pathological vessel occlusion. Reorganizations of the platelet cytoskeleton and agonist-induced intracellular Ca2+-mobilization are crucial for platelet hemostatic function. EF-hand domain containing 2 (EFhd2, Swiprosin-1) is a Ca2+-binding cytoskeletal adaptor protein involved in actin remodeling in different cell types, but its function in platelets is unknown. OBJECTIVE: Based on the described functions of EFhd2 in immune cells, we tested the hypothesis that EFhd2 is a crucial adaptor protein for platelet function acting as a regulator of Ca2+-mobilization and cytoskeletal rearrangements. METHODS AND RESULTS: We generated EFhd2-deficient mice and analyzed their platelets in vitro and in vivo. Efhd2-/- mice displayed normal platelet count and size, exhibited an unaltered in vivo life span and showed normal Ca2+-mobilization and activation/aggregation responses to classic agonists. Interestingly, upon stimulation of the immunoreceptor tyrosine-based activation motif-coupled receptor glycoprotein (GP) VI, Efhd2-/- platelets showed a slightly increased coagulant activity. Furthermore, absence of EFhd2 had no significant impact on integrin-mediated clot retraction, actomyosin rearrangements and spreading of activated platelets on fibrinogen. In vivo EFhd2-deficiency resulted in unaltered hemostatic function and unaffected arterial thrombus formation. CONCLUSION: These results show that EFhd2 is not essential for platelet function in mice indicating that other cytoskeletal adaptors may functionally compensate its loss.


Asunto(s)
Plaquetas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Activación Plaquetaria/genética , Agregación Plaquetaria/genética , Animales , Proteínas de Unión al Calcio/genética , Adhesión Celular/genética , Ratones , Ratones Noqueados , Pruebas de Función Plaquetaria
16.
Nat Commun ; 5: 4746, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25187265

RESUMEN

Wiskott-Aldrich syndrome (WAS) is caused by mutations in the WAS gene and is characterized by immunodeficiency, eczema and microthrombocytopenia. The molecular link between WAS mutations and microthrombocytopenia is unknown. Profilin1 (Pfn1) is a key actin-regulating protein that, besides actin, interacts with phosphoinositides and multiple proline-rich proteins, including the WAS protein (WASp)/WASp-interacting protein (WIP) complex. Here we report that mice with a megakaryocyte/platelet-specific Pfn1 deficiency display microthrombocytopenia due to accelerated turnover of platelets and premature platelet release into the bone marrow. Both Pfn1-null mouse platelets and platelets isolated from WAS patients contained abnormally organized and hyperstable microtubules. These results reveal an unexpected function of Pfn1 as a regulator of microtubule organization and point to a previously unrecognized mechanism underlying the platelet formation defect in WAS patients.


Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , Microtúbulos/metabolismo , Profilinas/deficiencia , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/metabolismo , Adolescente , Animales , Plaquetas/patología , Médula Ósea/metabolismo , Médula Ósea/patología , Niño , Preescolar , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Hematopoyesis , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Megacariocitos/patología , Ratones , Microtúbulos/patología , Mutación , Profilinas/genética , Transducción de Señal , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patología , Proteína del Síndrome de Wiskott-Aldrich/genética
17.
J Clin Invest ; 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23863626

RESUMEN

Platelets are anuclear organelle-rich cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity. The major platelet organelles, α-granules, release proteins that participate in thrombus formation and hemostasis. Proteins stored in α-granules are also thought to play a role in inflammation and wound healing, but their functional significance in vivo is unknown. Mutations in NBEAL2 have been linked to gray platelet syndrome (GPS), a rare bleeding disorder characterized by macrothrombocytopenia, with platelets lacking α-granules. Here we show that Nbeal2-knockout mice display the characteristics of human GPS, with defective α-granule biogenesis in MKs and their absence from platelets. Nbeal2 deficiency did not affect MK differentiation and proplatelet formation in vitro or platelet life span in vivo. Nbeal2-deficient platelets displayed impaired adhesion, aggregation, and coagulant activity ex vivo that translated into defective arterial thrombus formation and protection from thrombo-inflammatory brain infarction following focal cerebral ischemia. In a model of excisional skin wound repair, Nbeal2-deficient mice exhibited impaired development of functional granulation tissue due to severely reduced differentiation of myofibroblasts in the absence of α-granule secretion. This study demonstrates that platelet α-granule constituents are critically required not only for hemostasis but also thrombosis, acute thrombo-inflammatory disease states, and tissue reconstitution after injury.

18.
Trends Pharmacol Sci ; 33(11): 583-90, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22901552

RESUMEN

Platelet activation is a key step in the pathogenesis of ischemic cardio- and cerebrovascular diseases, which represent the leading causes of death and severe disability worldwide. Although existing antiplatelet drugs have proved beneficial in the clinic, their use is limited by their inherent effect on primary hemostasis, making the identification of novel pharmacological targets for platelet inhibition an important goal of cardiovascular research. In recent years, the central activating platelet collagen receptor, glycoprotein (GP) VI, has emerged as a promising antithrombotic target because its blockade or antibody-mediated depletion in circulating platelets was shown to effectively inhibit experimental thrombosis and thromboinflammatory disease states, such as stroke, without affecting hemostatic plug formation. In this review, we summarize the most important recent developments in understanding of GPVI function in hemostasis and thrombotic/inflammatory diseases and discuss the potential use of anti-GPVI agents to treat these pathologies in humans.


Asunto(s)
Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/tratamiento farmacológico , Animales , Plaquetas/metabolismo , Humanos , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/química , Glicoproteínas de Membrana Plaquetaria/genética , Estructura Terciaria de Proteína , Trombosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA