Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Toxicol Appl Pharmacol ; 461: 116407, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736439

RESUMEN

The progress in image-based high-content screening technology has facilitated high-throughput phenotypic profiling notably the quantification of cell morphology perturbation by chemicals. However, understanding the mechanism of action of a chemical and linking it to cell morphology and phenotypes remains a challenge in drug discovery. In this study, we intended to integrate molecules that induced transcriptomic perturbations and cellular morphological changes into a biological network in order to assess chemical-phenotypic relationships in humans. Such a network was enriched with existing disease information to suggest molecular and cellular profiles leading to phenotypes. Two datasets were used for this study. Firstly, we used the "Cell Painting morphological profiling assay" dataset, composed of 30,000 compounds tested on human osteosarcoma cells (named U2OS). Secondly, we used the "L1000 mRNA profiling assay" dataset, a collection of transcriptional expression data from cultured human cells treated with approximately 20,000 bioactive small molecules from the Library of Integrated Network-based Cellular Signatures (LINCS). Furthermore, pathways, gene ontology terms and disease enrichments were performed on the transcriptomics data. Overall, our study makes it possible to develop a biological network combining chemical-gene-pathway-morphological perturbation and disease relationships. It contains an ensemble of 9989 chemicals, 732 significant morphological features and 12,328 genes. Through diverse examples, we demonstrated that some drugs shared similar genes, pathways and morphological profiles that, taken together, could help in deciphering chemical-phenotype observations.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Fenotipo
2.
Mol Inform ; 43(6): e202400021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850150

RESUMEN

Drug development is a long and costly process, often limited by the toxicity and adverse drug reactions (ADRs) caused by drug candidates. Even on the market, some drugs can cause strong ADRs that can vary depending on an individual polymorphism. The development of Genome-wide association studies (GWAS) allowed the discovery of genetic variants of interest that may cause these effects. In this study, the objective was to investigate a deep learning approach to predict genetic variations potentially related to ADRs. We used single nucleotide polymorphisms (SNPs) information from dbSNP to create a network based on ADR-drug-target-mutations and extracted matrixes of interaction to build deep Neural Networks (DNN) models. Considering only information about mutations known to impact drug efficacy and drug safety from PharmGKB and drug adverse reactions based on the MedDRA System Organ Classes (SOCs), these DNN models reached a balanced accuracy of 0.61 in average. Including molecular fingerprints representing structural features of the drugs did not improve the performance of the models. To our knowledge, this is the first model that exploits DNN to predict ADR-drug-target-mutations. Although some improvements are suggested, these models can be of interest to analyze multiple compounds over all of the genes and polymorphisms information accessible and thus pave the way in precision medicine.


Asunto(s)
Aprendizaje Profundo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Predisposición Genética a la Enfermedad , Redes Neurales de la Computación , Polimorfismo de Nucleótido Simple , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Humanos , Estudio de Asociación del Genoma Completo
3.
J Cheminform ; 13(1): 91, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819133

RESUMEN

With the development of advanced technologies in cell-based phenotypic screening, phenotypic drug discovery (PDD) strategies have re-emerged as promising approaches in the identification and development of novel and safe drugs. However, phenotypic screening does not rely on knowledge of specific drug targets and needs to be combined with chemical biology approaches to identify therapeutic targets and mechanisms of actions induced by drugs and associated with an observable phenotype. In this study, we developed a system pharmacology network integrating drug-target-pathway-disease relationships as well as morphological profile from an existing high content imaging-based high-throughput phenotypic profiling assay known as "Cell Painting". Furthermore, from this network, a chemogenomic library of 5000 small molecules that represent a large and diverse panel of drug targets involved in diverse biological effects and diseases has been developed. Such a platform and a chemogenomic library could assist in the target identification and mechanism deconvolution of some phenotypic assays. The usefulness of the platform is illustrated through examples.

4.
Mol Inform ; 39(12): e2000116, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32725965

RESUMEN

Adverse drug reactions (ADRs) are of major concern in drug safety. However, due to the biological complexity of human systems, understanding the underlying mechanisms involved in development of ADRs remains a challenging task. Here, we applied network sciences to analyze a tripartite network between 1000 drugs, 1407 targets, and 6164 ADRs. It allowed us to suggest drug targets susceptible to be associated to ADRs and organs, based on the system organ class (SOC). Furthermore, a score was developed to determine the contribution of a set of proteins to ADRs. Finally, we identified proteins that might increase the susceptibility of genes to ADRs, on the basis of knowledge about genomic structural variation in genes encoding proteins targeted by drugs. Such analysis should pave the way to individualize drug therapy and precision medicine.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Preparaciones Farmacéuticas/química , Humanos , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA