Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sensors (Basel) ; 19(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925721

RESUMEN

We have developed a force sensing system to continuously evaluate the mechanical elasticity of micrometer-scale (a few hundred micrometers to a millimeter) live tissues. The sensing is achieved by measuring the deflection of force sensitive cantilevers through microscopic image analysis, which does not require electrical strain gauges. Cantilevers made of biocompatible polydimethylsiloxane (PDMS) were actuated by a piezoelectric actuator and functioned as a pair of chopsticks to measure the stiffness of the specimen. The dimensions of the cantilevers were easily adjusted to match the size, range, and stiffness of the zebrafish samples. In this paper, we demonstrated the versatility of this technique by measuring the mechanical elasticity of zebrafish embryos at different stages of development. The stiffness of zebrafish embryos was measured once per hour for 9 h. From the experimental results, we successfully quantified the stiffness change of zebrafish embryos during embryonic development.


Asunto(s)
Materiales Biocompatibles/química , Módulo de Elasticidad , Embrión no Mamífero/fisiología , Pez Cebra/crecimiento & desarrollo , Animales , Dimetilpolisiloxanos/química , Desarrollo Embrionario , Análisis de Elementos Finitos , Pinzas Ópticas
2.
Ann Biomed Eng ; 52(3): 647-656, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38036895

RESUMEN

The proper formation of the vertebrate embryonic heart relies on various mechanical forces which determine its form and function. Measuring these forces at the microscale of the embryo is a challenge. We propose a new tool utilizing high-resolution optical elastography and stiffness measurements of surrounding tissues to non-invasively track the changes in the pressure exerted by the heart on the neighboring yolk, as well as changes in contractile patterns during early cardiac growth in-vivo, using the zebrafish embryo as a model system. Cardiac development was characterized every three hours from 24 hours post-fertilization (hpf) to 30 hpf and compared between wildtype fish and those treated with MS-222, a commonly used fish anesthetic that decreases cardiac contractility. Wildtype embryos from 24 to 30 hpf showed an average yolk indentation pressure of 0.32 mmHg to 0.41 mmHg, respectively. MS-222 treated embryos showed an average yolk indentation pressure of 0.22 mmHg to 0.29 mmHg. Yolk indentation pressure between control and treated embryos at 24 hpf and 30 hpf showed a significant difference (p < 0.05). Our method allowed for contractility and pressure evaluation at these early developmental stages, which have not been previously reported in published literature, regardless of sample or imaging modality. This research could lead to a better understanding of heart development and improved diagnostic tools for congenital heart disease.


Asunto(s)
Aminobenzoatos , Diagnóstico por Imagen de Elasticidad , Pez Cebra , Animales , Embrión no Mamífero/diagnóstico por imagen , Corazón/diagnóstico por imagen
3.
J Biophotonics ; 16(3): e202200238, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36336921

RESUMEN

We evaluated the elasticity of live tissues of zebrafish embryos using label-free optical elastography. We employed a pair of custom-built elastic microcantilevers to gently compress a zebrafish embryo and used optical-tracking analysis to obtain the induced internal strain. We then built a finite element method (FEM) model and matched the strain with the optical analysis. The elastic moduli were found by minimizing the root-mean-square errors between the optical and FEM analyses. We evaluated the average elastic moduli of a developing somite, the overlying ectoderm, and the underlying yolk of seven zebrafish embryos during the early somitogenesis stages. The estimation results showed that the average elastic modulus of the somite increased from 150 to 700 Pa between 4- and 8-somite stages, while those of the ectoderm and the yolk stayed between 100 and 200 Pa, and they did not show significant changes. The result matches well with the developmental process of somitogenesis reported in the literature. This is among the first attempts to quantify spatially-resolved elasticity of embryonic tissues from optical elastography.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Pez Cebra , Animales , Diagnóstico por Imagen de Elasticidad/métodos , Microscopía , Desarrollo Embrionario , Módulo de Elasticidad
4.
Rev Sci Instrum ; 91(11): 114101, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261462

RESUMEN

The SARS-CoV-2 global pandemic has produced widespread shortages of certified air-filtering personal protection equipment and an acute need for rapid evaluation of breathability and filtration efficiency of proposed alternative solutions. Here, we describe experimental efforts to nondestructively quantify three vital characteristics of mask approaches: breathability, material filtration effectiveness, and sensitivity to fit. We focus on protection against aqueous aerosols >0.3 µm using off-the-shelf particle, flow, and pressure sensors, permitting rapid comparative evaluation of these three properties. We present and discuss both the pressure drop and the particle penetration as a function of flow to permit comparison of relative protection for a set of proposed filter and mask designs. The design considerations of the testing apparatus can be reproduced by university laboratories and medical facilities and used for rapid local quality control of respirator masks that are of uncertified origin, monitoring the long-term effects of various disinfection schemes and evaluating improvised products not designed or marketed for filtration.


Asunto(s)
COVID-19/prevención & control , Máscaras , Pandemias/prevención & control , Dispositivos de Protección Respiratoria , SARS-CoV-2 , Aerosoles , Microbiología del Aire , Movimientos del Aire , Presión del Aire , COVID-19/transmisión , Diseño de Equipo/normas , Cara , Filtración/instrumentación , Humanos , Máscaras/normas , Ensayo de Materiales/instrumentación , Ensayo de Materiales/normas , Respiradores N95/normas , Tamaño de la Partícula , Dispositivos de Protección Respiratoria/normas
5.
Dev Cell ; 5(6): 865-76, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14667409

RESUMEN

Slow-twitch muscle fibers of the zebrafish myotome undergo a unique set of morphogenetic cell movements. During embryogenesis, slow-twitch muscle derives from the adaxial cells, a layer of paraxial mesoderm that differentiates medially within the myotome, immediately adjacent to the notochord. Subsequently, slow-twitch muscle cells migrate through the entire myotome, coming to lie at its most lateral surface. Here we examine the cellular and molecular basis for slow-twitch muscle cell migration. We show that slow-twitch muscle cell morphogenesis is marked by behaviors typical of cells influenced by differential cell adhesion. Dynamic and reciprocal waves of N-cadherin and M-cadherin expression within the myotome, which correlate precisely with cell migration, generate differential adhesive environments that drive slow-twitch muscle cell migration through the myotome. Removing or altering the expression of either protein within the myotome perturbs migration. These results provide a definitive example of homophilic cell adhesion shaping cellular behavior during vertebrate development.


Asunto(s)
Cadherinas/genética , Movimiento Celular/fisiología , Fibras Musculares de Contracción Lenta/citología , Fibras Musculares de Contracción Lenta/fisiología , Músculo Esquelético/citología , Músculo Esquelético/embriología , Animales , Cadherinas/metabolismo , Adhesión Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/fisiología , Mutagénesis Sitio-Dirigida , Pez Cebra
6.
Curr Biol ; 14(18): 1632-8, 2004 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-15380064

RESUMEN

Although our understanding of the regulation of cellular actin and its control during the development of invertebrates is increasing, the question as to how such actin dynamics are regulated differentially across the vertebrate embryo to effect its relatively complex morphogenetic cell movements remains poorly understood. Intercellular signaling that provides spatial and temporal cues to modulate the subcellular localization and activity of actin regulatory molecules represents one important mechanism. Here we explore whether the localized gene expression of specific actin regulatory molecules represents another developmental mechanism. We have identified a cap1 homolog and a novel guanine nucleotide exchange factor (GEF), quattro (quo), that share a restricted gene expression domain in the anterior mesendoderm of the zebrafish gastrula. Each gene is required for specific cellular behaviors during the anterior migration of this tissue; furthermore, cap1 regulates cortical actin distribution specifically in these cells. Finally, although cap1 and quo are autonomously required for the normal behaviors of these cells, they are also nonautonomously required for convergence and extension movements of posterior tissues. Our results provide direct evidence for the deployment of developmentally restricted actin-regulatory molecules in the control of morphogenetic cell movements during vertebrate development.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Actinas/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , ADN Complementario/genética , Bases de Datos Genéticas , Proteínas Fúngicas , Gástrula/fisiología , Inmunohistoquímica , Hibridación in Situ , Datos de Secuencia Molecular , Morfogénesis , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Transcripción/genética
7.
Dev Biol ; 309(2): 169-79, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17689522

RESUMEN

As the vertebrate myotome is generated, myogenic precursor cells undergo extensive and coordinated movements as they differentiate into properly positioned embryonic muscle fibers. In the zebrafish, the "adaxial" cells adjacent to the notochord are the first muscle precursors to be specified. After initially differentiating into slow-twitch myosin-expressing muscle fibers, these cells have been shown to undergo a remarkable radial migration through the lateral somite, to populate the superficial layer of slow-twitch muscle of the mature myotome. Here we characterize an earlier set of adaxial cell behaviors; the transition from a roughly 4x5 array of cuboidal cells to a 1x20 stack of elongated cells, prior to the migration event. We find that adaxial cells display a highly stereotypical series of behaviors as they undergo this rearrangement. Furthermore, we show that the actin regulatory molecule, Cap1, is specifically expressed in adaxial cells and is required for the progression of these behaviors. The requirement of Cap1 for a cellular apical constriction step is reminiscent of similar requirements of Cap during apical constriction in Drosophila development, suggesting a conservation of gene function for a cell biological event critical to many developmental processes.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Musculares/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Tipificación del Cuerpo , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Mutación , Notocorda/fisiología , Somitos/fisiología , Pez Cebra/embriología
8.
Dev Dyn ; 234(4): 992-6, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16222715

RESUMEN

Gene knockout studies of Krüppel-like factors (KLFs) in mice have shown essential roles in organogenesis. A screen for KLF family members in zebrafish identified many KLFs. One of these, zebrafish KLF4 (zKLF4) is the homologue of neptune, a Xenopus laevis KLF. zKLF4 is expressed from approximately 80% epiboly a patch of dorsal/anterior mesendodermal cells called the pre-polster and, subsequently, in the polster and hatching gland. Here we investigate the function of zKLF4 using morpholino-based antisense oligonucleotides. Knockdown of zKLF4 resulted in complete absence of hatching gland formation and subsequent hatching in zebrafish. In addition, there was early knockdown of expression of the pre-polster/anterior mesendoderm markers CatL, cap1, and BMP4. These results indicate zKLF4 is expressed within the pre-polster, an early mesendodermal site, and that it plays a critical role in the differentiation of these cells into hatching gland cells.


Asunto(s)
Diferenciación Celular/fisiología , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Endodermo/metabolismo , Hibridación in Situ , Factor 4 Similar a Kruppel , Oligonucleótidos Antisentido , Pez Cebra/metabolismo
9.
Development ; 130(23): 5851-60, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14573513

RESUMEN

A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.


Asunto(s)
Proteínas de la Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Humanos , Sustancias Macromoleculares , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Musculares/clasificación , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Fenotipo , Filogenia , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sarcolema/metabolismo , Alineación de Secuencia , Transgenes , Pez Cebra/anatomía & histología , Pez Cebra/genética , Proteínas de Pez Cebra/clasificación , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA