RESUMEN
New hypotheses and predictions have arisen from recent work revealing atomic-scale or near-atomic-scale structures of receptors in the 'Cys-loop' superfamily. How general is the cation-pi interaction between the natural ligand and a tryptophan residue in the aromatic box, and does this interaction extend to other ligands? What is the pathway from the binding site to gating, and what are the conformational changes during gating and desensitization? Is current flow through intracellular 'portals' in the wall of the channel a general feature? This article discusses these and related questions, emphasizing nicotinic ACh receptors and also discussing data from other members of this superfamily.
Asunto(s)
Cisteína/química , Activación del Canal Iónico/fisiología , Estructura Cuaternaria de Proteína/fisiología , Receptores Nicotínicos/química , Animales , Sitios de Unión , Cationes/metabolismo , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores Nicotínicos/metabolismo , Alineación de Secuencia , Relación Estructura-ActividadRESUMEN
The epithelial sodium channel (ENaC), a heterotrimeric complex composed of alpha, beta, and gamma subunits, belongs to the ENaC/degenerin family of ion channels and forms the principal route for apical Na(+) entry in many reabsorbing epithelia. Although high affinity ENaC blockers, including amiloride and derivatives, have been described, potent and specific small molecule ENaC activators have not been reported. Here we describe compound S3969 that fully and reversibly activates human ENaC (hENaC) in an amiloride-sensitive and dose-dependent manner in heterologous cells. Mechanistically, S3969 increases hENaC open probability through interactions requiring the extracellular domain of the beta subunit. hENaC activation by S3969 did not require cleavage by the furin protease, indicating that nonproteolyzed channels can be opened. Function of alphabetaG37Sgamma hENaC, a channel defective in gating that leads to the salt-wasting disease pseudohypoaldosteronism type I, was rescued by S3969. Small molecule activation of hENaC may find application in alleviating human disease, including pseudohypoaldosteronism type I, hypotension, and neonatal respiratory distress syndrome, when improved Na(+) flux across epithelial membranes is clinically desirable.
Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Indoles/farmacología , Activación del Canal Iónico/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Amilorida/farmacología , Animales , Línea Celular , Canales Epiteliales de Sodio/química , Espacio Extracelular , Femenino , Furina/metabolismo , Humanos , Indoles/química , Ratones , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Seudohipoaldosteronismo/metabolismo , Bibliotecas de Moléculas Pequeñas/química , XenopusRESUMEN
A series of tethered quaternary ammonium derivatives of Tyr have been incorporated into the binding site of the nicotinic acetylcholine receptor (nAChR) using the in vivo nonsense suppression method, producing constitutively active (self-gating) receptors. We have incorporated primary, secondary, and tertiary amine tethered agonists to give receptors whose constitutive activity can be modulated by pH. Lowering the pH protonates the tethered amine, giving it a positive charge and allowing it to reversibly activate the receptor. Tertiary and secondary tethered amines, TyrO3T and TyrO3S, have been successfully incorporated at alpha149 in the nAChR. Constitutive currents at pH 5.5 are 6 times those at pH 9.0. The pKa of TyrO3T in the binding site appears to be 6 or lower, differing substantially from its pKa in solution ( approximately 9.3). This local pKa perturbation has substantial implications for pharmacological research on the nAChR: of the tertiary agonists considered, noracetylcholine experiences this pKa perturbation, while nicotine does not.
Asunto(s)
Nicotina/metabolismo , Agonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animales , Sitios de Unión , Cinética , Modelos Moleculares , Nicotina/química , Agonistas Nicotínicos/metabolismo , Receptores Nicotínicos/química , Xenopus laevisRESUMEN
To study conformational transitions at the muscle nicotinic acetylcholine (ACh) receptor (nAChR), a rhodamine fluorophore was tethered to a Cys side chain introduced at the beta 19' position in the M2 region of the nAChR expressed in Xenopus oocytes. This procedure led to only minor changes in receptor function. During agonist application, fluorescence increased by (Delta F/F) approximately 10%, and the emission peak shifted to lower wavelengths, indicating a more hydrophobic environment for the fluorophore. The dose-response relations for Delta F agreed well with those for epibatidine-induced currents, but were shifted approximately 100-fold to the left of those for ACh-induced currents. Because (i) epibatidine binds more tightly to the alpha gamma-binding site than to the alpha delta site and (ii) ACh binds with reverse-site selectivity, these data suggest that Delta F monitors an event linked to binding specifically at the alpha delta-subunit interface. In experiments with flash-applied agonists, the earliest detectable Delta F occurs within milliseconds, i.e., during activation. At low [ACh] (< or = 10 microM), a phase of Delta F occurs with the same time constant as desensitization, presumably monitoring an increased population of agonist-bound receptors. However, recovery from Delta F is complete before the slowest phase of recovery from desensitization (time constant approximately 250 s), showing that one or more desensitized states have fluorescence like that of the resting channel. That conformational transitions at the alpha delta-binding site are not tightly coupled to channel activation suggests that sequential rather than fully concerted transitions occur during receptor gating. Thus, time-resolved fluorescence changes provide a powerful probe of nAChR conformational changes.