Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585736

RESUMEN

CRISPR/Cas9 methods are a powerful in vivo approach to edit the genome of Drosophila melanogaster. To convert existing Drosophila GAL4 lines to LexA driver lines in a secondary school classroom setting, we applied the CRISPR-based genetic approach to a collection of Gal4 'driver' lines. The integration of the yellow+ coat color marker into homology-assisted CRISPR knock-in (HACK) enabled visual selection of Gal4-to-LexA conversions using brightfield stereo-microscopy available in a broader set of standard classrooms. Here, we report the successful conversion of eleven Gal4 lines with expression in neuropeptide-expressing cells into corresponding, novel LexA drivers. The conversion was confirmed by LexA- and Gal4-specific GFP reporter gene expression. This curriculum was successfully implemented in a summer course running 16 hours/week for seven weeks. The modularity, flexibility, and compactness of this course should enable development of similar classes in secondary schools and undergraduate curricula, to provide opportunities for experience-based science instruction, and university-secondary school collaborations that simultaneously fulfill research needs in the community of science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA