Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
iScience ; 25(4): 104058, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35359806

RESUMEN

Histone methylation, particularly at the H3K4 position, is thought to contribute to the specification of photoreceptor cell fate; however, the mechanisms linking histone methylation with transcription factor transactivation and photoreceptor gene expression have not yet been determined. Here, we demonstrate that MLL5 is abundantly expressed in the mouse retina. Mll5 deficiency impaired electroretinogram responses, alongside attenuated expression of a number of retina genes. Mechanistic studies revealed that MLL5 interacts with the retina-specific transcription factor, CRX, contributing to its binding to photoreceptor-specific gene promoters. Moreover, depletion of MLL5 impairs H3K4 methylation and H3K79 methylation, which subsequently compromises CRX-CBP assembly and H3 acetylation on photoreceptor promoters. Our data support a scenario in which recognition of H3K4 methylation by MLL5 is required for photoreceptor-specific gene transcription through maintaining a permissive chromatin state and proper CRX-CBP recruitment at promoter sites.

2.
Antioxid Redox Signal ; 33(17): 1191-1208, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32336105

RESUMEN

Aims: Current treatment options for ovarian clear cell carcinoma (OCCC) are limited to combination of platinum-based and other cytotoxic agents to which patients respond poorly due to intrinsic chemoresistance. There is therefore an urgent need to develop alternative therapeutic strategies for OCCC. Results: Cysteine deprivation suppresses OCCC growth in vitro and in vivo with no apparent toxicity. Modes of cell death induced by cysteine deprivation in OCCC are determined by their innate metabolic profiles. Cysteine-deprived glycolytic OCCC is abolished primarily by oxidative stress-dependent necrosis and ferroptosis, which can otherwise be prevented by pretreatment with antioxidative agents. Meanwhile, OCCC that relies on mitochondria respiration for its bioenergetics is suppressed through apoptosis, which can otherwise be averted by pretreatment with cysteine precursor alone, but not with antioxidative agents. Cysteine deprivation induces apoptosis in respiring OCCC by limiting iron-sulfur (Fe-S) cluster synthesis in the mitochondria, without which electron transport chain may be disrupted. Respiring OCCC responds to Fe-S cluster deficit by increasing iron influx into the mitochondria, which leads to iron overload, mitochondria damage, and eventual cell death. Innovation/Conclusion: This study demonstrates the importance of cysteine availability in OCCC that is for its antioxidative property and its less appreciated role in mitochondria respiration. Regardless of OCCC metabolic profiles, cysteine deprivation abolishes both glycolytic and respiring OCCC growth in vitro and in vivo. Conclusion: This study highlights the therapeutic potential of cysteine deprivation for OCCC.


Asunto(s)
Adenocarcinoma de Células Claras/metabolismo , Cisteína/metabolismo , Hierro/metabolismo , Neoplasias Ováricas/metabolismo , Estrés Oxidativo , Azufre/metabolismo , Apoptosis , Supervivencia Celular , Femenino , Ferroptosis , Glutatión/metabolismo , Humanos , Mitocondrias/metabolismo , Modelos Biológicos , Necrosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA