Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Clin Oral Investig ; 28(5): 287, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684576

RESUMEN

OBJECTIVES: Coffin-Siris Syndrome (CSS) is a congenital disorder characterized by delayed growth, dysmorphic facial features, hypoplastic nails and phalanges of the fifth digit, and dental abnormalities. Tooth agenesis has been reported in CSS patients, but the mechanisms regulating this syndromic tooth agenesis remain largely unknown. This study aims to identify the pathogenic mutation of CSS presenting tooth genesis and explore potential regulatory mechanisms. MATERIALS AND METHODS: We utilized whole-exome sequencing to identify variants in a CSS patient, followed by Sanger validation. In silico analysis including conservation analysis, pathogenicity predictions, and 3D structural assessments were carried out. Additionally, single-cell RNA sequencing and fluorescence in situ hybridization (FISH) were applied to explore the spatio-temporal expression of Sox4 expression during murine tooth development. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to examine the functional role of SOX4. RESULTS: A novel de novo SOX4 missense mutation (c.1255C > G, p.Leu419Val) was identified in a Chinese CSS patient exhibiting tooth agenesis. Single-cell RNA sequencing and FISH further verified high expression of Sox4 during murine tooth development, and WGCNA confirmed its central role in tooth development pathways. Enriched functions included cell-substrate junctions, focal adhesion, and RNA splicing. CONCLUSIONS: Our findings link a novel SOX4 mutation to syndromic tooth agenesis in CSS. This is the first report of SOX4 missense mutation causing syndromic tooth agenesis. CLINICAL RELEVANCE: This study not only enhances our understanding of the pathogenic mutation for syndromic tooth agenesis but also provides genetic diagnosis and potential therapeutic insights for syndromic tooth agenesis.


Asunto(s)
Anodoncia , Secuenciación del Exoma , Cara , Discapacidad Intelectual , Micrognatismo , Mutación Missense , Cuello , Factores de Transcripción SOXC , Animales , Femenino , Humanos , Masculino , Ratones , Anomalías Múltiples/genética , Anodoncia/genética , Cara/anomalías , Deformidades Congénitas de la Mano/genética , Hibridación Fluorescente in Situ , Micrognatismo/genética , Cuello/anomalías , Factores de Transcripción SOXC/genética
2.
J Periodontal Res ; 58(4): 800-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37221903

RESUMEN

BACKGROUND AND OBJECTIVE: Periodontal ligament (PDL) and dental pulp (DP) share a common origin but have distinct biological and mechanical functions. To what extent the mechanoresponsive property of PDL can be attributed to its unique transcriptional profiles of cellular heterogeneity is unclear. This study aims to decipher cellular heterogeneity and distinct mechanoresponsive characteristics of odontogenic soft tissues and their underlying molecular mechanisms. MATERIALS AND METHODS: A single-cell comparison of digested human periodontal ligament (PDL) and dental pulp (DP) was performed using scRNA-seq. An in vitro loading model was constructed to measure mechanoresponsive ability. Dual-luciferase assay, overexpression, and shRNA knockdown were used to investigate the molecular mechanism. RESULTS: Our results demonstrate striking fibroblast heterogeneity across and within human PDL and DP. We demonstrated that a tissue-specific subset of fibroblasts existed in PDL exhibiting high expression of mechanoresponsive extracellular matrix (ECM) genes, which was verified by an in vitro loading model. ScRNA-seq analysis indicated a particularly enriched regulator in PDL-specific fibroblast subtype, Jun Dimerization Protein 2 (JDP2). Overexpression and knockdown of JDP2 extensively regulated the downstream mechanoresponsive ECM genes in human PDL cells. The force loading model demonstrated that JDP2 responded to tension and that knockdown of JDP2 effectively inhibited the mechanical force-induced ECM remodeling. CONCLUSIONS: Our study constructed the PDL and DP ScRNA-seq atlas to demonstrate PDL and DP fibroblast cellular heterogeneity and identify a PDL-specific mechanoresponsive fibroblast subtype and its underlying mechanism.


Asunto(s)
Fibroblastos , Análisis de Expresión Génica de una Sola Célula , Humanos , Células Cultivadas , Fibroblastos/metabolismo , Matriz Extracelular , Ligamento Periodontal/metabolismo
3.
Oral Dis ; 29(6): 2401-2408, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36219525

RESUMEN

This study aims to review the pathogenic mechanisms and clinical manifestations in syndromes with tooth agenesis (TA). Online Mendelian Inheritance in Man and PubMed databases were searched for a comprehensive review. Previous publications reported complicated aetiologies of syndromic TA. Gene mutations in conserved signalling pathways (WNT, EDA, SHH, FGF, and TGF-ß/BMP) and crucial molecules (PAX9, PIXT2, IRF6, the p53 family, and subunits of RNA polymerase III) are the main causes of syndromic TA. In the process of odontogenesis, antagonistic or synergistic interactions are demonstrated in patients and murine models. Mutations in some genes (WNT10A, WNT10B, AXIN2, ANTXR1, MSX1, EDA, EDAR, and EDARADD) can result in both syndromic and isolated TA. In addition, chromosomal anomalies are also responsible for syndromic TA (Down syndrome, Wolf-Hirschhorn syndrome, Williams syndrome, and Pierre Robin sequence). The causes and manifestations of syndromic TA are highly complex, and this constitutes a clinical challenge. Mutations in signalling pathways and crucial molecules as well as chromosomal anomalies are responsible for syndromic TA. And there are overlaps between the causative genes of syndromic and isolated TA.


Asunto(s)
Anodoncia , Animales , Ratones , Síndrome , Anodoncia/genética , Mutación , Aberraciones Cromosómicas , Transducción de Señal , Factores Reguladores del Interferón/genética
4.
Clin Oral Investig ; 27(8): 4369-4378, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37184613

RESUMEN

OBJECTIVES: The purpose of this study was to identify associations between PAX9 mutations and clinical features of non-syndromic tooth agenesis patients. MATERIALS AND METHODS: Non-syndromic tooth agenesis patients were found to have mutations by whole exome sequencing (WES). Additionally, conservation analysis and three-dimensional structure prediction were also applied to identify mutated proteins. RESULTS: Eight non-syndromic tooth agenesis probands were identified with PAX9 mutations (c.C112T; C.131_134del; c.G151A; c.189delG; c.305delT; c.C365A; c.394delG; c.A679C). All of the probands were missing more than six teeth (oligodontia). The mutations (c.131_134del,p.R44fs; c.189delG,p.T63fs; c.305delT,p.I102fs and c.394delG,p.G123fs) caused premature termination of the PAX9 protein. The c.C112T(p.R38X) mutation created a truncated protein. Bioinformatic prediction demonstrated that the three missense mutations change the PAX9 structure suggesting the corresponding functional impairments. CONCLUSIONS: We reported that eight mutations of PAX9 caused non-syndromic tooth agenesis and analyzed the relationship between PAX9 mutations and non-syndromic tooth agenesis. CLINICAL RELEVANCE: Our study revealed that PAX9 mutations might be the mutations most associated with non-syndromic tooth agenesis in humans, which greatly broadened the mutation spectrum of PAX9-related non-syndromic tooth agenesis.


Asunto(s)
Anodoncia , Diente , Humanos , Mutación , Anodoncia/genética , Genotipo , Fenotipo , Proteínas/genética , Factor de Transcripción PAX9/genética
5.
J Biol Chem ; 294(42): 15395-15407, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31462535

RESUMEN

The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a central role in cell survival and function. STAT3 has been demonstrated to participate in the maintenance of bone homeostasis in osteoblasts, but its role in osteoclasts in vivo remains poorly defined. Here, we generated a conditional knockout mouse model in which Stat3 was deleted in osteoclasts using a cathepsin K-Cre (Ctsk-Cre) driver. We observed that osteoclast-specific Stat3 deficiency caused increased bone mass in mice, which we attributed to impaired bone catabolism by osteoclasts. Stat3-deficient bone marrow macrophages (BMMs) showed decreased expression of nuclear factor of activated T cells, cytoplasm 1 (NFATc1), and reduced osteoclast differentiation determined by decreases in osteoclast number, tartrate-resistant acid phosphatase activity, and expression of osteoclast marker genes. Enforced expression of NFATc1 in Stat3-deficient BMMs rescued the impaired osteoclast differentiation. Mechanistically, we revealed that STAT3 could drive the transcription of NFATc1 by binding to its promoter. Furthermore, preventing STAT3 activation by using an inhibitor of upstream phosphorylases, AG490, also impaired osteoclast differentiation and formation in a similar way as gene deletion of Stat3 In summary, our data provide the first evidence that STAT3 is significant in osteoclast differentiation and bone homeostasis in vivo, and it may be identified as a potential pharmacological target for the treatment of bone metabolic diseases through regulation of osteoclast activity.


Asunto(s)
Huesos/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Factor de Transcripción STAT3/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Homeostasis , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Osteoclastos/citología , Factor de Transcripción STAT3/genética , Transducción de Señal
6.
J Biol Chem ; 292(1): 196-204, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27879318

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) is involved in anabolic metabolism in both osteoblasts and chondrocytes, but the role of mTORC1 in osteoclast biology in vivo remains to be elucidated. In this study, we showed that deletion of regulatory-associated protein of mTOR (Raptor) in osteoclasts led to an increase in bone mass with decreased bone resorption. Raptor-deficient bone marrow-derived macrophages exhibited lower mTORC1-S6K1 signaling and retarded osteoclast differentiation, as determined by the number of osteoclasts, tartrate-resistant acid phosphatase activity, and expression of osteoclast-specific genes. Enforced expression of constitutively active S6K1 rescued the impaired osteoclast differentiation in Raptor-deficient bone marrow-derived macrophages. Furthermore, pharmacological inhibition of mTORC1 signaling by rapamycin could also inhibit osteoclast differentiation and osteoclast-specific gene expression. Taken together, our findings demonstrate that mTORC1 plays a key role in the network of catabolic bone resorption in osteoclasts and may serve as a potential pharmacological target for the regulation of osteoclast activity in bone metabolic disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Huesos/patología , Diferenciación Celular , Complejos Multiproteicos/antagonistas & inhibidores , Osteoclastos/patología , Osteogénesis/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Densidad Ósea , Huesos/metabolismo , Células Cultivadas , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Osteoclastos/metabolismo , Fosforilación , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
J Craniofac Surg ; 29(5): 1216-1219, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29498973

RESUMEN

OBJECTIVE: The aim of the study was to study the specific morphological features of alveolar bone and compare it to femoral bone in rats. METHODS: Twelve 3-month-old nonpregnant female Sprague-Dawley rats were used in the present study. The left maxillae and femurs of 6 rats were used for micro-computed tomography (micro-CT) scanning. The trabecular bone of the distal femur and the interradicular alveolar bone of the maxillary first molar were reconstructed and analyzed. Another 6 rats were used for histological analysis of trabecular bone and alveolar bone. RESULTS: Micro-CT analysis suggested that the femoral trabecular bone was porous with rod-like trabeculae with a scattered distribution in bone marrow, whereas alveolar bone showed a compact structure with plate-like trabeculae and limited bone marrow. Tissue mineral density, bone mineral density, bone volume fraction, and trabecular thickness were dramatically higher in the alveolar bone compared with that in the trabecular bone. Alveolar bone displayed lower trabecular number and trabecular separation. Histomorphometric analysis showed that alveolar bone was formed of compact bone with wide trabeculae, whereas femurs were composed of loose bone with finer trabeculae. CONCLUSIONS: In comparison to the spongiosa of the distal femur, alveolar bone displays specific morphological features with compact, wide, and highly mineralized trabeculae.


Asunto(s)
Maxilar , Animales , Femenino , Fémur/química , Fémur/diagnóstico por imagen , Fémur/fisiología , Maxilar/química , Maxilar/diagnóstico por imagen , Maxilar/fisiología , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
8.
J Bone Miner Res ; 39(5): 580-594, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38477783

RESUMEN

Healthy alveolar bone is the cornerstone of oral function and oral treatment. Alveolar bone is highly dynamic during the entire lifespan and is affected by both systemic and local factors. Importantly, alveolar bone is subjected to unique occlusal force in daily life, and mechanical force is a powerful trigger of bone remodeling, but the effect of occlusal force in maintaining alveolar bone mass remains ambiguous. In this study, the Piezo1 channel is identified as an occlusal force sensor. Activation of Piezo1 rescues alveolar bone loss caused by a loss of occlusal force. Moreover, we identify Piezo1 as the mediator of occlusal force in osteoblasts, maintaining alveolar bone homeostasis by directly promoting osteogenesis and by sequentially regulating catabolic metabolism through Fas ligand (FasL)-induced osteoclastic apoptosis. Interestingly, Piezo1 activation also exhibits remarkable efficacy in the treatment of alveolar bone osteoporosis caused by estrogen deficiency, which is highly prevalent among middle-aged and elderly women. Promisingly, Piezo1 may serve not only as a treatment target for occlusal force loss-induced alveolar bone loss but also as a potential target for metabolic bone loss, especially in older patients.


Daily occlusal force and estrogen synergistically maintain alveolar bone homeostasis. PIEZO1 in osteoblasts plays a critical role in sensing occlusal force and maintaining bone mass. PIEZO1 may promote osteoclastic apoptosis through osteoblast-secreted FasL through a PIEZO1-STAT3/ESR1-FasL pathway. Restoration of occlusal force with dental therapies as early as possible to prevent alveolar bone loss is the major priority in oral health care. PIEZO1 may serve as a potential target for bone metabolism disorders.


Asunto(s)
Homeostasis , Canales Iónicos , Animales , Femenino , Canales Iónicos/metabolismo , Ratones , Fuerza de la Mordida , Osteogénesis , Humanos , Osteoblastos/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/patología , Apoptosis , Osteoclastos/metabolismo
9.
Mol Cell Biochem ; 378(1-2): 19-28, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23435958

RESUMEN

Mechanical stimuli play a significant role in the regulation of bone remodeling during orthodontic tooth movement. However, the correlation between mechanical strain and bone remodeling is still poorly understood. In this study, we used a model of continuous mechanical strain (CMS) on bone mesenchymal stem cells (BMSCs) to investigate the proliferation and osteogenic differentiation of BMSCs and the mechanism of mechano-transduction. A CMS of 10 % at 1 Hz suppressed the proliferation of BMSCs and induced early osteogenic differentiation within 48 h by activating Runx2 and increasing alkaline phosphatase (ALP) activity and mRNA expression of osteogenesis-related genes (ALP, collagen type I, and osteopontin). Regarding mitogen-activated protein kinase (MAPK) activation, CMS induced phased phosphorylation of p38 consisting of a rapid induction of p38 MAPK at 10 min and a rapid decay after 1 h. Furthermore, the potent p38 inhibitor SB203580 blocked the induction of p38 MAPK signaling, but had little effect on subsequent osteogenic events. These results demonstrate that mechanical strain may act as a stimulator to induce the differentiation of BMSCs into osteoblasts, which is a vital function for bone formation in orthodontic tooth movement. However, activation of the p38 signaling pathway may not be involved in this process.


Asunto(s)
Diferenciación Celular , Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas/fisiología , Fosfatasa Alcalina/metabolismo , Animales , Proliferación Celular , Forma de la Célula , Supervivencia Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Imidazoles/farmacología , Mecanotransducción Celular , Osteogénesis , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Estrés Fisiológico , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Mol Cell Biochem ; 382(1-2): 273-82, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23842623

RESUMEN

Osteoporosis is characterized by a broken balance between bone formation and bone resorption. Mechanical stress has been considered to be an important factor in bone modeling and remodeling. However, biological responses of stromal cells in osteoporosis to mechanical stimuli remain unknown. To explore the correlation between mechanical stress and osteoblastic differentiation of bone mesenchymal stem cells (BMSCs) in osteoporosis, we built an osteoporosis model in ovariectomized (OVX) rats, and then investigated proliferation, alkaline phosphatase (ALP) activity, and the expression of osteoblastic genes in BMSCs under mechanical stress of 5 and 10% elongation, using the Flexercell Strain system. The proliferation of BMSCs was detected using alamarBlue. The expression of osteoblastic genes was analyzed by real-time quantitative polymerase chain reaction. Protein expression was examined by Western blotting. BMSCs (OVX) and BMSCs (Sham-operated, Sham in short) proliferations were inhibited at 5 and 10% elongation at day 3, compared with the un-stretched group, while BMSCs (OVX) proliferation was slower than BMSCs (Sham). ALP activity increased significantly at 10% elongation in both cells, but it was less active in BMSCs (OVX) than BMSCs (Sham). At days 3 and 7, the mRNA expression of osteoblastic genes was unregulated by mechanical stretch (5 and 10 % elongation); however, osteoblastic gene expression in BMSCs (OVX) was less than that in BMSCs (Sham). The mRNA and protein expression of Runx2 showed similar trends in BMSCs (OVX) under mechanical stretch. These results indicate that the mechanical stretch stimulates osteoblastic differentiation of BMSCs (OVX); however, this differentiation was weaker than that of BMSCs (Sham).


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/citología , Ovariectomía , Estrés Mecánico , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Citoesqueleto/metabolismo , Femenino , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/enzimología , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
11.
J Craniofac Surg ; 24(4): 1184-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23851766

RESUMEN

The aim of this prospective clinical and magnetic resonance imaging study was to analyze the effect of 1-year Activator (Yi-fan Dental Co., Shanghai, China) treatment in internal anatomical relationships of the temporomandibular joint (TMJ) complex, including the condyle-disc relationship, condyle-fossa relationship, condylar height change, disc length change, and morphologic change of the glenoid fossa. The study was composed of patients with class II division 1 malocclusion (11 girls and 13 boys) who underwent 1-year Activator treatment. All the patients were in the acceleration or peak phase of the pubertal growth spurt. Magnetic resonance imaging in closed-mouth position and lateral cephalometric radiographs before and after 1 year of Activator treatment were analyzed metrically. Overall, condylar height showed a significant increase (P < 0.001), and the eminence angle decreased (P = 0.037). TMJ disc length has no statistically significant change before and after treatment. A slight advancement (P = 0.041) was found in the sagittal condylar position. A significant backward movement (P = 0.04) was shown in the sagittal disc position. Our results showed that the disc is not impaired by Activator therapy; it seems possible that adaptive remodeling, including a shallower glenoid fossa and increased condylar height, was seen after treatment.


Asunto(s)
Aparatos Activadores , Maloclusión Clase II de Angle/terapia , Articulación Temporomandibular/patología , Adolescente , Cefalometría/métodos , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Maloclusión Clase II de Angle/patología , Cóndilo Mandibular/patología , Estudios Prospectivos , Disco de la Articulación Temporomandibular/patología
12.
J Bone Miner Res ; 38(1): 214-227, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370067

RESUMEN

Mechanical force is essential to shape the internal architecture and external form of the skeleton by regulating the bone remodeling process. However, the underlying mechanism of how the bone responds to mechanical force remains elusive. Here, we generated both orthodontic tooth movement (OTM) model in vivo and a cyclic stretch-loading model in vitro to investigate biomechanical regulation of the alveolar bone. In this study, signal transducer and activator of transcription 3 (STAT3) was screened as one of the mechanosensitive proteins by protein array analysis of cyclic stretch-loaded bone mesenchymal stem cells (BMSCs) and was also proven to be activated in osteoblasts in response to the mechanical force during OTM. With an inducible osteoblast linage-specific Stat3 knockout model, we found that Stat3 deletion decelerated the OTM rate and reduced orthodontic force-induced bone remodeling, as indicated by both decreased bone resorption and formation. Both genetic deletion and pharmacological inhibition of STAT3 in BMSCs directly inhibited mechanical force-induced osteoblast differentiation and impaired osteoclast formation via osteoblast-osteoclast cross-talk under mechanical force loading. According to RNA-seq analysis of Stat3-deleted BMSCs under mechanical force, matrix metalloproteinase 3 (Mmp3) was screened and predicted to be a downstream target of STAT3. The luciferase and ChIP assays identified that Stat3 could bind to the Mmp3 promotor and upregulate its transcription activity. Furthermore, STAT3-inhibitor decelerated tooth movement through inhibition of the bone resorption activity, as well as MMP3 expression. In summary, our study identified the mechanosensitive characteristics of STAT3 in osteoblasts and highlighted its critical role in force-induced bone remodeling during orthodontic tooth movement via osteoblast-osteoclast cross-talk. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Resorción Ósea , Metaloproteinasa 3 de la Matriz , Humanos , Metaloproteinasa 3 de la Matriz/metabolismo , Técnicas de Movimiento Dental , Factor de Transcripción STAT3/metabolismo , Ligamento Periodontal/metabolismo , Remodelación Ósea/fisiología , Resorción Ósea/metabolismo , Osteoclastos/metabolismo
13.
Int J Biol Sci ; 19(7): 2021-2033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151888

RESUMEN

Bone exhibits changes in density, strength, and microarchitecture in relation to mechanical loading mediated by exercise. Appropriate exercise maintains bone homeostasis, while the absence of exercise leads to disuse bone loss. However, the acting mechanism of mechanotransduction in bone remains unclear. We performed the running-wheel exercise and tail suspension model to study the effects of exercise on bone metabolism, and found that osteoblastic Signal transducer and activator of transcription 3 (STAT3) activity was closely related to exercise-induced bone mass and metabolism changes. With the Flexcell tension-loading system in vitro, mechanical force promoted STAT3 activity, which was accompanied by increased osteoblastic differentiation of the bone marrow mesenchymal stem cells (BMSCs). In contrast, the inhibition of STAT3 phosphorylation blocked force-induced osteoblastic differentiation. Furthermore, pharmacological inactivation of STAT3 impaired the increase in exercise-induced bone mass and osteogenesis. With an inducible conditional deletion mouse model, we found that the osteoblast lineage-specific Stat3 deletion could also block force-induced osteoblastic differentiation in vitro and impair exercise-promoted bone mass and osteogenesis in vivo. This confirmed the crucial role of osteoblastic STAT3 in exercise-mediated bone metabolism. Finally, colivelin, a STAT3 agonist, promoted osteoblastic differentiation in vitro and partly rescued exercise loss-induced disuse bone loss by improving osteogenesis in the tail suspension model. Taken together, our study revealed the essential role of STAT3 in maintaining exercise-mediated bone homeostasis. In addition, STAT3 might act as a potential target for osteoporosis caused by exercise loss.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteogénesis , Ratones , Animales , Osteogénesis/genética , Mecanotransducción Celular , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Huesos/metabolismo , Osteoblastos/metabolismo , Diferenciación Celular/genética , Homeostasis , Enfermedades Óseas Metabólicas/metabolismo
14.
J Vis Exp ; (197)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37677029

RESUMEN

The alveolar bone, with a high turnover rate, is the most actively-remodeling bone in the body. Orthodontic tooth movement (OTM) is a common artificial process of alveolar bone remodeling in response to mechanical force, but the underlying mechanism remains elusive. Previous studies have been unable to reveal the precise mechanism of bone remodeling in any time and space due to animal model-related restrictions. The signal transducer and activator of transcription 3 (STAT3) is important in bone metabolism, but its role in osteoblasts during OTM is unclear. To provide in vivo evidence that STAT3 participates in OTM at specific time points and in particular cells during OTM, we generated a tamoxifen-inducible osteoblast lineage-specific Stat3 knockout mouse model, applied orthodontic force, and analyzed the alveolar bone phenotype. Micro-computed tomography (Micro-CT) and stereo microscopy were used to access OTM distance. Histological analysis selected the area located within three roots of the first molar (M1) in the cross-section of the maxillary bone as the region of interest (ROI) to evaluate the metabolic activity of osteoblasts and osteoclasts, indicating the effect of orthodontic force on alveolar bone. In short, we provide a protocol for using inducible osteoblast lineage-specific Stat3 knockout mice to study bone remodeling under orthodontic force and describe methods for analyzing alveolar bone remodeling during OTM, thus shedding new light on skeletal mechanical biology.


Asunto(s)
Factor de Transcripción STAT3 , Técnicas de Movimiento Dental , Ratones , Animales , Ratones Noqueados , Factor de Transcripción STAT3/genética , Microtomografía por Rayos X , Remodelación Ósea , Modelos Animales de Enfermedad
15.
Adv Healthc Mater ; : e2303681, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054523

RESUMEN

Overactivated inflammatory reactions hinder the bone regeneration process. Timely transformation of microenvironment from pro-inflammatory to anti-inflammatory after acute immune response is favorable for osteogenesis. Macrophages play an important role in the immune response to inflammation. Therefore, this study adopts TIM3 high expression extracellular vesicles (EVs) with immunosuppressive function to reshape the early immune microenvironment of bone injury, mainly by targeting macrophages. These EVs can be phagocytosed by macrophages, thereby increasing the infiltration of TIM3-positive macrophages (TIM3+ macrophages) and M2 subtypes. The TIM3+ macrophage group has some characteristics of M2 macrophages and secretes cytokines, such as IL-10 and TGF-ß1 to regulate inflammation. TIM3, which is highly expressed in the engineered EVs, mediates the release of anti-inflammatory cytokines by inhibiting the p38/MAPK pathway and promotes osseointegration by activating the Bmp2 promoter to enhance macrophage BMP2 secretion. After evenly loading the engineered EVs into the hydrogel, the continuous and slow release of EVsTIM3OE recruits more anti-inflammatory macrophages during the early stages of bone defect repair, regulating the immune microenvironment and eliminating the adverse effects of excessive inflammation. In summary, this study provides a new strategy for the treatment of refractory wounds through early inflammation control.

16.
Nat Commun ; 12(1): 6891, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824272

RESUMEN

Skeletal deformities are typical AD-HIES manifestations, which are mainly caused by heterozygous and loss-of-function mutations in Signal transducer and activator of transcription 3 (STAT3). However, the mechanism is still unclear and the treatment strategy is limited. Herein, we reported that the mice with Stat3 deletion in osteoblasts, but not in osteoclasts, induced AD-HIES-like skeletal defects, including craniofacial malformation, osteoporosis, and spontaneous bone fracture. Mechanistic analyses revealed that STAT3 in cooperation with Msh homeobox 1(MSX1) drove osteoblast differentiation by promoting Distal-less homeobox 5(Dlx5) transcription. Furthermore, pharmacological activation of STAT3 partially rescued skeletal deformities in heterozygous knockout mice, while inhibition of STAT3 aggravated bone loss. Taken together, these data show that STAT3 is critical for modulating skeletal development and maintaining bone homeostasis through STAT3-indcued osteogenesis and suggest it may be a potential target for treatments.


Asunto(s)
Osteogénesis/genética , Factor de Transcripción STAT3/metabolismo , Animales , Desarrollo Óseo/genética , Remodelación Ósea/genética , Diferenciación Celular/efectos de los fármacos , Proteínas de Homeodominio/genética , Homeostasis/efectos de los fármacos , Homeostasis/genética , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Anomalías Musculoesqueléticas/tratamiento farmacológico , Anomalías Musculoesqueléticas/genética , Anomalías Musculoesqueléticas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Transducción de Señal , Transcripción Genética
17.
J Vis Exp ; (176)2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34723941

RESUMEN

Zygomatic implants (ZIs) are an ideal way to address cases of a severely atrophic edentulous maxilla and maxilla defects because they replace extensive bone augmentation and shorten the treatment cycle. However, there are risks associated with the placement of ZIs, such as penetration of the orbital cavity or infra-temporal fossa. Furthermore, the placement of multiple ZIs makes this surgery risky and more difficult to perform. Potential intraoperative complications are extremely dangerous and may cause irreparable losses. Here, we describe a practical, feasible, and reproducible protocol for a real-time surgical navigation system for precisely placing quad-zygomatic implants in the severely atrophic maxilla of patients with residual bone that does not meet the requirements of conventional implants. Hundreds of patients have received ZIs at our department based on this protocol. The clinical outcomes have been satisfactory, the intraoperative and postoperative complications have been low, and the accuracy indicated by infusion of the designed image and postoperative three-dimensional image has been high. This method should be utilized during the entire surgical procedure to ensure ZI placement safety.


Asunto(s)
Maxilar , Cirugía Asistida por Computador , Atrofia/patología , Estudios de Seguimiento , Humanos , Maxilar/cirugía , Prótesis e Implantes , Cigoma/cirugía
18.
Front Cell Dev Biol ; 9: 648866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816498

RESUMEN

The novel small molecule Napabucasin (also known as BBI608) was shown to inhibit gene transcription driven by Signal Transducer and Activator of Transcription 3 (STAT3), which is considered a promising anticancer target. Many preclinical studies have been conducted in cancer patients examining the selective targeting of cancer stem cells by Napabucasin, but few studies have examined side effects of Napabucasin in the skeleton system. In the present study, we found treating bone marrow mesenchymal stem cells (BMSCs) with Napabucasin in vitro impaired their osteogenic differentiation. In terms of mechanisms, Napabucasin disrupted differentiation of BMSCs by inhibiting the transcription of osteogenic gene osteocalcin (Ocn) through STAT3. Moreover, through micro-CT analysis we found 4 weeks of Napabucasin injections induced mouse bone loss. Histological analysis revealed that Napabucasin-induced bone loss in mice was the result of impaired osteogenesis. In conclusion, this study provided evidence for the effect of Napabucasin on mouse bone homeostasis and revealed its underlying mechanisms in vivo and in vitro.

19.
J Vis Exp ; (162)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32925878

RESUMEN

Here we present an efficient method for isolating and culturing mandibular bone marrow mesenchymal stem cells (mBMSCs) in vitro to rapidly obtain numerous high-quality cells for experimental requirements. mBMSCs could be widely used in therapeutic applications as tissue engineering cells in case of craniofacial diseases and cranio-maxillofacial regeneration in the future due to the excellent self-renewal ability and multi-lineage differentiation potential. Therefore, it is important to obtain mBMSCs in large numbers. In this study, bone marrow was flushed from the mandible and primary mBMSCs were isolated through whole bone marrow adherent cultivation. Furthermore, CD29+CD90+CD45- mBMSCs were purified through fluorescent cell sorting. The second generation of purified mBMSCs were used for further study and displayed potential in differentiating into osteoblasts, adipocytes, and chondrocytes. Utilizing this in vitro model, one can obtain a high number of proliferative mBMSCs, which may facilitate the study of the biological characteristics, the subsequent reaction to the microenvironment, and other applications of mBMSCs.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Mandíbula/citología , Células Madre Mesenquimatosas/citología , Adipogénesis , Animales , Linaje de la Célula , Células Cultivadas , Condrogénesis , Ensayo de Unidades Formadoras de Colonias , Citometría de Flujo , Masculino , Osteogénesis , Ratas Sprague-Dawley
20.
J Vis Exp ; (161)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32716374

RESUMEN

Transgenic mouse models are powerful for understanding the critical genes controlling osteoclast differentiation and activity, and for studying mechanisms and pharmaceutical treatments of osteoporosis. Cathepsin K (Ctsk)-Cre mice have been widely used for functional studies of osteoclasts. The signal transducer and activator of transcription 3 (STAT3) is relevant in bone homeostasis, but its role in osteoclasts in vivo remains poorly defined. To provide the in vivo evidence that STAT3 participates in osteoclast differentiation and bone metabolism, we generated an osteoclast-specific Stat3 deletion mouse model (Stat3 fl/fl; Ctsk-Cre) and analyzed its skeletal phenotype. Micro-CT scanning and 3D reconstruction implied increased bone mass in the conditional knockout mice. H&E staining, calcein and alizarin red double staining, and tartrate-resistant acid phosphatase (TRAP) staining were performed to detect bone metabolism. In short, this protocol describes some canonical methods and techniques to analyze skeletal phenotype and to study the critical genes controlling osteoclast activity in vivo.


Asunto(s)
Osteoclastos/metabolismo , Factor de Transcripción STAT3/genética , Animales , Huesos/metabolismo , Masculino , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA