Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
Más filtros

Intervalo de año de publicación
1.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37982712

RESUMEN

Interpretation of cryo-electron microscopy (cryo-EM) maps requires building and fitting 3D atomic models of biological molecules. AlphaFold-predicted models generate initial 3D coordinates; however, model inaccuracy and conformational heterogeneity often necessitate labor-intensive manual model building and fitting into cryo-EM maps. In this work, we designed a protein model-building workflow, which combines a deep-learning cryo-EM map feature enhancement tool, CryoFEM (Cryo-EM Feature Enhancement Model) and AlphaFold. A benchmark test using 36 cryo-EM maps shows that CryoFEM achieves state-of-the-art performance in optimizing the Fourier Shell Correlations between the maps and the ground truth models. Furthermore, in a subset of 17 datasets where the initial AlphaFold predictions are less accurate, the workflow significantly improves their model accuracy. Our work demonstrates that the integration of modern deep learning image enhancement and AlphaFold may lead to automated model building and fitting for the atomistic interpretation of cryo-EM maps.


Asunto(s)
Aprendizaje Profundo , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Molecular , Conformación Proteica
2.
FASEB J ; 38(5): e23515, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38470367

RESUMEN

Endometriosis is a benign gynecological disease that shares some common features of malignancy. Autophagy plays vital roles in endometriosis and influences endometrial cell metastasis, and hypoxia was identified as the initiator of this pathological process through hypoxia inducible factor 1 alpha (HIF-1α). A newly discovered circular RNA FOXO3 (circFOXO3) is critical in cell autophagy, migration, and invasion of various diseases and is reported to be related to hypoxia, although its role in endometriosis remains to be elucidated up to now. In this study, a lower circFOXO3 expression in ectopic endometrium was investigated. Furthermore, we verified that circFOXO3 could regulate autophagy by downregulating the level of p53 protein to mediate the migration and invasion of human endometrial stromal cells (T HESCs). Additionally, the effects of HIF-1α on circFOXO3 and autophagy were examined in T HESCs. Notably, overexpression of HIF-1α could induce autophagy and inhibit circFOXO3 expression, whereas overexpressing of circFOXO3 under hypoxia significantly inhibited hypoxia-induced autophagy. Mechanistically, the direct combination between HIF-1α and HIF-1α-binding site on adenosine deaminase 1 acting on RNA (ADAR1) promoter increased the level of ADAR1 protein, which bind directly with circFOXO3 pre-mRNA to block the cyclization of circFOXO3. All these results support that hypoxia-mediated ADAR1 elevation inhibited the expression of circFOXO3, and then autophagy was induced upon loss of circFOXO3 via inhibition of p53 degradation, participating in the development of endometriosis.


Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/genética , Proteína p53 Supresora de Tumor , ARN , ARN Circular/genética , Autofagia , Hipoxia
3.
Genomics ; 116(2): 110803, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290592

RESUMEN

N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.


Asunto(s)
Endometriosis , ARN Largo no Codificante , Femenino , Humanos , Animales , ARN Largo no Codificante/genética , Transcriptoma , Endometriosis/genética , Adenosina , Metilación , Mamíferos
4.
J Am Chem Soc ; 146(29): 19874-19885, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007743

RESUMEN

Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.


Asunto(s)
Aptámeros de Nucleótidos , Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas , Aptámeros de Nucleótidos/química , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/sangre , Proteoma/análisis , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Biomarcadores de Tumor/sangre , Nanopartículas de Magnetita/química , Corona de Proteínas/química
5.
J Clin Immunol ; 44(5): 117, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758229

RESUMEN

AIOLOS, a vital member of the IKAROS protein family, plays a significant role in lymphocyte development and function through DNA binding and protein-protein interactions. Mutations in the IKZF3 gene, which encodes AIOLOS, lead to a rare combined immunodeficiency often linked with infections and malignancy. In this study, we evaluated a 1-year-4-month-old female patient presenting with recurrent infections, diarrhea, and failure to thrive. Laboratory investigations revealed decreased T lymphocyte and immunoglobulin levels. Through whole-exome and Sanger sequencing, we discovered a de novo mutation in IKZF3 (NM_012481; exon 5 c.571G > C, p.Gly191Arg), corresponding to the third DNA-binding zinc finger region of the encoded protein AIOLOS. Notably, the patient with the AIOLOS G191R mutation showed reduced recent thymic emigrants in naïve CD4+T cells compared to healthy counterparts of the same age, while maintaining normal levels of Th1, Th2, Th17, Treg, and Tfh cells. This mutation also resulted in decreased switched memory B cells and lower CD23 and IgM expression. In vitro studies revealed that AIOLOS G191R does not impact the expression of AIOLOS but compromises its stability, DNA binding and pericentromeric targeting. Furthermore, AIOLOS G191R demonstrated a dominant-negative effect over the wild-type protein. This case represents the first reported instance of a mutation in the third DNA-binding zinc finger region of AIOLOS highlighting its pivotal role in immune cell functionality.


Asunto(s)
Factor de Transcripción Ikaros , Mutación , Humanos , Factor de Transcripción Ikaros/genética , Femenino , Mutación/genética , Lactante , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Secuenciación del Exoma , Linfocitos B/inmunología
6.
Anal Chem ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39192740

RESUMEN

Highly abundant proteins present in biological fluids and tissues significantly interfere with low-abundance protein identification by mass spectrometry (MS), limiting proteomic depth and hindering protein biomarker discovery. Herein, to enhance the coverage of tissue proteomics, we developed a nanoparticle-protein corona (NP-PC)-based method for the aging mouse proteome atlas. Based on this method, we investigated the complexity of life process of 5 major organs, including the heart, liver, spleen, lungs, and kidneys, from 4 groups of mice at different ages. Compared with the conventional strategy, NP-PC-based proteomics significantly increased the number of identified protein groups in the heart (from 3007 to 3927; increase of 30.6%), liver (from 2982 to 4610; increase of 54.6%), spleen (from 5047 to 7351; increase of 45.7%), lungs (from 4984 to 6903; increase of 38.5%), and kidneys (from 3550 to 5739; increase of 61.7%), and we identified a total of 10 104 protein groups. The overall data indicated that 3-week-old mice showed more differences compared with the other three age groups. The proteins of amino acid-related metabolism were increased in aged mice compared with those in the 3-week-old mice. Protein-related infections were increased in the spleen of the aged mice. Interestingly, the spliceosome-related pathway significantly changed from youth to elders in the liver, spleen, and lungs, indicating the vital role of the spliceosome during the aging process. Our established aging mouse organ proteome atlas provides comprehensive insights into understanding the aging process, and it may help in prevention and treatment of age-related diseases.

7.
Opt Express ; 32(9): 16563-16577, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859280

RESUMEN

Zero-thickness model and slab model are two important models in the description of optical behaviors in two-dimensional atomic crystals. The predicted difference in optical behaviors between the two models is very small, which is difficult to distinguish by established measurement methods. Here, we present an optical spatial differentiation method to examine the difference in edge images of different graphene layers. The theoretical results show that the edge imaging is significantly different between the two different models. When the beam reflection is at the Brewster angle, different graphene layers are used to adjust the spatial differentiation. It is shown that the slab model is more sensitive to the number of graphene layers. The zero-thickness model is more suitable for one-dimensional optical differential operation. Moreover, the spatial differentiation plays the role of a band-pass filter. The high-frequency edge information components will pass through the filter, thus realizing layer-sensitive edge-enhanced imaging. In addition, we do not focus on the verification of the exact model, but only provide an alternative method to characterize the number of graphene layers based on two models, and also provide possibilities for achieving imaging edge detection by graphene differential operators. This study may provide a possible method for the optical characterization of two-dimensional atomic crystals.

8.
Langmuir ; 40(28): 14697-14707, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38973644

RESUMEN

Regular array structures prepared by laser processing and three-dimensional printing have promising applications in building stable superhydrophobic structures. However, the size of the materials processed by these two methods is affected by the size of the processing equipment, which prevents the processing of large-size materials. In this paper, a columnar unit consisting of a spherical structure with similar mechanical stability to the array structure is designed and prepared for metal surface protection. A convenient electrodeposition method was used to deposit a layer of columnar micron-sized copper consisting of spheres on the surface of a 6061 aluminum alloy. Subsequently, modified ZrO2 nanoparticles and polytetrafluoroethylene (PTFE) were sprayed on the surface to form a superhydrophobic surface with synergistic columnar units and ZrO2 (CAZ). The structure was tested and found to have excellent mechanical stability, maintaining the superhydrophobic properties of the surface even after 200 abrasion cycles of 1000-grit sandpaper under a 500 g load. Moreover, the vertical deformation of the CAZ sample under normal pressure was increased by a factor of 4 compared to the original substrate. Importantly, in subsequent corrosion resistance tests, the CAZ samples showed a two-order-of-magnitude improvement in self-corrosion current density and impedance modulus at low frequencies compared to the original substrate. This strategy is an effective method for preparing mechanically stable superhydrophobic structures that are low-cost and large enough to provide long-term protection for metal surfaces. It is particularly suitable for surface protection of instruments and automotive chassis armor.

9.
Mol Cell Biochem ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581552

RESUMEN

Muscle atrophy and skeletal muscle fibrosis are significant pathological manifestations of primary sarcopenia. The regulation of C2C12 myoblast and skeletal muscle fibroblast apoptosis is associated with these pathological changes. Previous studies have indicated that irisin, the cleaved form of fibronectin type III domain-containing protein 5 (FNDC5), can alleviate primary sarcopenia. However, the mechanisms of the effect of irisin in age-related apoptosis remain unknown. Our present research aimed to explore the effect of irisin and the underlying mechanism of D-galactose (D-gal)-induced apoptosis in skeletal muscle fibroblasts and C2C12 myoblasts. We found the opposite effects of D-gal on C2C12 myoblasts and fibroblasts. We also found that irisin suppressed C2C12 cell apoptosis and promoted fibroblast apoptosis. Mechanistically, irisin altered D-gal-induced apoptosis by increasing caveolin-1 expression. Taken together, these findings further demonstrated that irisin is a potential agent that can treat aged-relative muscle atrophy and fibrosis.

10.
Circ Res ; 130(10): 1565-1582, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35410483

RESUMEN

BACKGROUND: S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular disease; inhibition of SAH hydrolase (SAHH) results in SAH accumulation and induces endothelial dysfunction and atherosclerosis. However, the effect and mechanism of SAHH in atherosclerotic calcification is still unclear. We aimed to explore the role and mechanism of SAHH in atherosclerotic calcification. METHODS: The relationship between SAHH and atherosclerotic calcification was investigated in patients with coronary atherosclerotic calcification. Different in vivo genetic models were used to examine the effect of SAHH deficiency on atherosclerotic calcification. Human aortic and murine vascular smooth muscle cells (VSMCs) were cultured to explore the underlying mechanism of SAHH on osteoblastic differentiation of VSMCs. RESULTS: The expression and activity of SAHH were decreased in calcified human coronary arteries and inversely associated with coronary atherosclerotic calcification severity, whereas plasma SAH and total homocysteine levels were positively associated with coronary atherosclerotic calcification severity. Heterozygote knockout of SAHH promoted atherosclerotic calcification. Specifically, VSMC-deficient but not endothelial cell-deficient or macrophage-deficient SAHH promoted atherosclerotic calcification. Mechanistically, SAHH deficiency accumulated SAH levels and induced H19-mediated Runx2 (runt-related transcription factor 2)-dependent osteoblastic differentiation of VSMCs by inhibiting DNMT3b (DNA methyltransferase 3b) and leading to hypomethylation of the H19 promoter. On the contrary, SAHH deficiency resulted in lower intracellular levels of adenosine and reduced AMPK (AMP-activated protein kinase) activation. Adenosine supplementation activated AMPK and abolished SAHH deficiency-induced expression of H19 and Runx2 and osteoblastic differentiation of VSMCs. Finally, AMPK activation by adenosine inhibited H19 expression by inducing Sirt1 (sirtuin-1)-mediated histone H3 hypoacetylation and DNMT3b-mediated hypermethylation of the H19 promoter in SAHH deficiency VSMCs. CONCLUSIONS: We have confirmed a novel correlation between SAHH deficiency and atherosclerotic calcification and clarified a new mechanism that epigenetic upregulation of H19 and AMPK inhibition concurrently contribute to SAHH deficiency-promoted Runx2-dependent atherosclerotic calcification.


Asunto(s)
Aterosclerosis , Calcinosis , Calcificación Vascular , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos , Animales , Aterosclerosis/metabolismo , Calcinosis/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Epigénesis Genética , Glicina N-Metiltransferasa/deficiencia , Humanos , Ratones , Miocitos del Músculo Liso/metabolismo , ARN Largo no Codificante , S-Adenosilhomocisteína/metabolismo , Regulación hacia Arriba , Calcificación Vascular/genética , Calcificación Vascular/metabolismo
11.
Int J Legal Med ; 138(4): 1509-1521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38332350

RESUMEN

Bone age assessment (BAA) is crucial in various fields, including legal proceedings, athletic competitions, and clinical medicine. However, the use of X-ray methods for age estimation without medical indication is subject to ethical debate, especially in forensic and athletic fields. The application of magnetic resonance imaging (MRI) with non-ionizing radiation can overcome this limitation in BAA. This study aimed to compare the application value of several MRI modalities of proximal humeral in BAA. A total of 468 patients with shoulder MRIs were retrospectively collected from a Chinese Han population aged 12-30 years (259 males and 209 females) for training and testing, including T1 weighted MRI (T1WI), T2 weighted MRI (T2WI), and Proton density weighted MRI (PDWI). Optimal regression models were established for age estimation, yielding mean absolute error (MAE) values below 2.0 years. The MAE values of T1WI were the lowest, with 1.700 years in males and 1.798 years in females. The area under the curve (AUC) and accuracy values of different MRI modalities of 16-year and 18-year thresholds were all around 0.9. For the 18-year threshold, T1WI outperformed T2WI and PDWI. In conclusion, the three MRI modalities of the proximal humerus can serve as reliable indicators for age assessment, while the T1WI performed better in age assessment and classification.


Asunto(s)
Determinación de la Edad por el Esqueleto , Epífisis , Húmero , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adolescente , Determinación de la Edad por el Esqueleto/métodos , Niño , Epífisis/diagnóstico por imagen , Epífisis/crecimiento & desarrollo , Adulto Joven , Adulto , Estudios Retrospectivos , Húmero/diagnóstico por imagen
12.
Naturwissenschaften ; 111(5): 45, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141101

RESUMEN

6-methoxybenzoxazolinone (6-MBOA) is a secondary plant metabolite predominantly found in monocotyledonous plants, especially Gramineae. In damaged tissue, 2-ß-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc) is hydrolyzed to DIMBOA, which spontaneously decomposes into 6-MBOA. It is commonly detected in plants consumed by voles and livestock and can also be present in cereal-based products. Discovered in 1955, this compound is renowned for its ability to trigger animal reproduction. However, there is a lack of research on its functional and mechanistic properties, leaving much of their potential unexplored. This review aimed to comprehensively summarize the effects of 6-MBOA on animal reproduction and human health, as well as its defensive role against herbivores. Studies have shown that 6-MBOA effectively inhibits the digestion, development, growth, and reproduction of insects. 6-MBOA may act as a partial agonist of melatonin and exert a regulatory role in mammalian reproduction, resulting in either promoting or inhibiting effects. 6-MBOA has been theorized to possess anti-tumor, anti-AIDS, anti-anxiety, and weight-loss effects in humans. However, insufficient attention has been paid to its defense properties against mammalian herbivores, and the mechanisms underlying its effects on mammalian reproduction remain unclear. In addition, research on its impact on human health is still in its preliminary stages. The review emphasizes the need for further systematic and comprehensive research on 6-MBOA to fully understand its diverse functions. Elucidating the effects of 6-MBOA on animal reproduction, adaptation, and human health would advance our understanding of plant-herbivore coevolution and the influence of environmental factors on animal population dynamics. Furthermore, this knowledge could potentially promote its application in human health and animal husbandry.


Asunto(s)
Reproducción , Animales , Reproducción/efectos de los fármacos , Reproducción/fisiología , Humanos , Benzoxazoles
13.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326625

RESUMEN

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias Colorrectales , Depsipéptidos , Compuestos Macrocíclicos , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Depsipéptidos/farmacología , Depsipéptidos/uso terapéutico , Depsipéptidos/química , Depsipéptidos/síntesis química , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cereb Cortex ; 33(6): 2415-2425, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35641181

RESUMEN

Major depressive disorder (MDD) is the second leading cause of disability worldwide. Currently, the structural magnetic resonance imaging-based MDD diagnosis models mainly utilize local grayscale information or morphological characteristics in a single site with small samples. Emerging evidence has demonstrated that different brain structures in different circuits have distinct developmental timing, but mature coordinately within the same functional circuit. Thus, establishing an attention-guided unified classification framework with deep learning and individual structural covariance networks in a large multisite dataset could facilitate developing an accurate diagnosis strategy. Our results showed that attention-guided classification could improve the classification accuracy from primary 75.1% to ultimate 76.54%. Furthermore, the discriminative features of regional covariance connectivities and local structural characteristics were found to be mainly located in prefrontal cortex, insula, superior temporal cortex, and cingulate cortex, which have been widely reported to be closely associated with depression. Our study demonstrated that our attention-guided unified deep learning framework may be an effective tool for MDD diagnosis. The identified covariance connectivities and structural features may serve as biomarkers for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Encéfalo , Imagen por Resonancia Magnética , Atención , Redes Neurales de la Computación
15.
Gen Comp Endocrinol ; 345: 114393, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865149

RESUMEN

Gonadotropin-releasing hormone (GnRH) superfamily comprises multiple families of signaling peptides in both protostomes and deuterostomes. Among this superfamily, vertebrate GnRH stimulates reproduction, but other GnRH superfamily members elicit diverse pleiotropic effects. Within the GnRH superfamily members, adipokinetic hormone (AKH) and its receptor are well described in ecdysozoans but understudied in other lineages. To fill this knowledge gap, we deorphanized a putative receptor for a lophotrochozoan AKH in a gastropod mollusk, Aplysia californica, and named it Aplca-AKHR. Phylogenetic analysis revealed an orthologous relationship of Aplca-AKHR with ecdysozoan AKHRs and other putative lophotrochozoan AKHRs. Aplca-AKHR bound specifically to the previously identified Aplca-AKH with high affinity and activated the inositol phosphate pathway. Aplca-AKHR was expressed widely among central and peripheral tissues, but most prominently in several central ganglia and the heart. The expression of Aplca-AKHR was downregulated by a hyposaline challenge, consistent with a role in volume and fluid regulation previously described for its ligand, Aplca-AKH. In summary, this is the first pairing of a lophotrochozoan AKH with its cognate receptor. Expression data further support diverse central and peripheral roles, including volume and fluid control, of this ligand/receptor pair.


Asunto(s)
Gastrópodos , Hormonas de Insectos , Animales , Aplysia/genética , Aplysia/metabolismo , Secuencia de Aminoácidos , Gastrópodos/metabolismo , Filogenia , Ligandos , Hormona Liberadora de Gonadotropina/metabolismo , Hormonas de Insectos/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo
16.
Mikrochim Acta ; 191(6): 326, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740583

RESUMEN

Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.


Asunto(s)
Movimiento Celular , Quimioterapia Combinada , Nanopartículas , Neoplasias , Dióxido de Silicio , Movimiento Celular/efectos de los fármacos , Dióxido de Silicio/química , Quimioterapia Combinada/métodos , Neoplasias/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Nanopartículas/ultraestructura , Células A549 , Microscopía Electrónica de Transmisión , Humanos
17.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38544095

RESUMEN

Micro-Doppler time-frequency analysis has been regarded as an important parameter extraction method for conical micro-motion objects. However, the micro-Doppler effect caused by micro-motion can modulate the frequency of lidar echo, leading to coupling between structure and micro-motion parameters. Therefore, it is difficult to extract parameters for micro-motion cones. We propose a new method for parameter extraction by combining the range profile of a micro-motion cone and the micro-Doppler time-frequency spectrum. This method can effectively decouple and accurately extract the structure and the micro-motion parameters of cones. Compared with traditional time-frequency analysis methods, the accuracy of parameter extraction is higher, and the information is richer. Firstly, the range profile of the micro-motion cone was obtained by using an FMCW (Frequency Modulated Continuous Wave) lidar based on simulation. Secondly, quantitative analysis was conducted on the edge features of the range profile and the micro-Doppler time-frequency spectrum. Finally, the parameters of the micro-motion cone were extracted based on the proposed decoupling parameter extraction method. The results show that our method can effectively extract the cone height, the base radius, the precession angle, the spin frequency, and the gravity center height within the range of a lidar LOS (line of sight) angle from 20° to 65°. The average absolute percentage error can reach below 10%. The method proposed in this paper not only enriches the detection information regarding micro-motion cones, but also improves the accuracy of parameter extraction and establishes a foundation for classification and recognition. It provides a new technical approach for laser micro-Doppler detection in accurate recognition.

18.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731630

RESUMEN

A series of novel amine triphenolate iron complexes were synthesized and characterized using UV, IR, elemental analysis, and high-resolution mass spectrometry. These complexes were applied to the ring-opening polymerization (ROP) of cyclohexene oxide (CHO), demonstrating excellent activity (TOF > 11050 h-1) in the absence of a co-catalyst. In addition, complex C1 maintained the dimer in the presence of the reaction substrate CHO, catalyzing the ring-opening polymerization of CHO to PCHO through bimetallic synergy. Furthermore, a two-component system consisting of iron complexes and TBAB displayed the ability to catalyze the reaction of CHO with CO2, resulting in the formation of cis-cyclic carbonate with high selectivity. Complex C4 exhibited the highest catalytic activity, achieving 80% conversion of CHO at a CHO/C4/TBAB molar ratio of 2000/1/8 and a CO2 pressure of 3 MPa for 16 h at 100 °C, while maintaining >99% selectivity of cis-cyclic carbonates, which demonstrated good conversion and selectivity.

19.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3462-3472, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39041118

RESUMEN

To comprehensively reveal and utilize the plant resources of Lycium in China, this study determined and compared the content of monosaccharides, polysaccharides, proteins, carotenoids, organic acids, and phenols in the dried fruits of 8 different Lycium species. Furthermore, the traits including the hundred-fruit weight, shape index, and the ratio of seed to fruit were measured, and the correlations between the content of chemical compounds and fruit traits were assessed. The results showed that L. truncatum, L. barbarum var. auranticarpum, and L. dasystemum var. rubricaulium were the species with high content of monosaccharides. L. barbarum and L. barbarum var. auranticarpum were the species with high content of total polysaccharides, and L. barbarum was the species with high content of carotenoids. L. yunnanense and L. chinense var. potaninii had high content of soluble proteins. L. truncatum, L. dasystemum, and L. barbarum showed high content of organic acids and phenols. L. barbarum and L. barbarum var. auranticarpum demonstrated high fruit weight, while L. yunnanense and L. chinense had high ratios of seed to fruit. The multivariate statistical analysis indicated that polysaccharides, carotenoids, hundred-fruit weight, ratio of seed to fruit, scopolamine, fructose, 5-O-feruloylquinic acid, kaempferol-3-O-rutinoside, scopoletin, cryptochlorogenic acid, and caffeic acid were the main differential compounds in the fruits among different species of Lycium. Moreover, the results of correlation ananysis showed strong correlations between fruit traits and compound content. Specifically, the hundred-fruit weight had positive correlations with the content of total polysaccharides and scopola-mine. The ratio of seed to fruit was negatively correlated with the content of rutin, kaempferol-3-O-rutinoside, fructose, and glucose and positively correlated with the content of succinic acid, soluble proteins, and zeaxanthin. The results implied that chemical compounds presented different distribution patterns in the fruits of 8 Lycium species. This study provides a basis for the comprehensive development and utilization, targeted breeding, and value-added application of Lycium plants.


Asunto(s)
Carotenoides , Frutas , Lycium , Lycium/química , Lycium/crecimiento & desarrollo , Frutas/química , Frutas/crecimiento & desarrollo , Carotenoides/análisis , Fenoles/análisis , Polisacáridos/análisis , Polisacáridos/química , Monosacáridos/análisis , China , Proteínas de Plantas/análisis
20.
Carcinogenesis ; 44(6): 463-475, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37158456

RESUMEN

Circular RNAs (circRNAs) have been accepted to play key roles in the development and progression of mutiple cancers including colorectal cancer (CRC). Here, we identified circ-METTL9, derived from 2 to 4 exons of METTL9 gene, may promote CRC progression by accelerating cell cycle progression. However, the role and mechanism of circ-METTL9 in CRC remains unclear. Based on our data, the expression of circ-METTL9 was significantly upregulated in CRC tissues and markedly increased in advanced tumors in CRC patients. Functional experiments demonstrated that circ-METTL9 overexpression promoted CRC cells proliferation and migration in vitro, and simultaneously enhanced CRC tumor growth and metastasis in vivo. Mechanistically, RNA immunoprecipitation (RIP) assays proved that circ-METTL9 might be a miRNA sponge, and RNA pulldown assays showed the interaction between circ-METTL9 and miR-551b-5p. Notably, cyclin-dependent kinase 6 (CDK6), a key regulator in cell cycle, is a conserved downstream target of miR-551b-5p. Taken together, our findings highlight a novel oncogenic function of circ-METTL9 in CRC progression via circ-METTL9/miR-551b-5p/CDK6 axis, which may serve as a prognostic biomarker and therapeutic target for CRC patients.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Quinasa 6 Dependiente de la Ciclina/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Metiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA