Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nano Lett ; 23(16): 7358-7363, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37535707

RESUMEN

Real Chern insulators have attracted great interest, but so far, their material realization is limited to nonmagnetic crystals and systems without spin-orbit coupling. Here, we reveal the magnetic real Chern insulator (MRCI) state in a recently synthesized metal-organic framework material Co3(HITP)2. Its ground state with in-plane ferromagnetic ordering hosts a nontrivial real Chern number, enabled by the C2zT symmetry and robustness against spin-orbit coupling. Distinct from previous nonmagnetic examples, the topological corner zero modes of MRCIs are spin-polarized. Furthermore, under small tensile strains, the material undergoes a topological phase transition from the MRCI to a magnetic double-Weyl semimetal phase, via a pseudospin-1 critical state. Similar physics can also be found in closely related materials Mn3(HITP)2 and Fe3(HITP)2, which also exist. Possible experimental detections and implications of an emerging magnetic flat band in the system are discussed.

2.
J Am Chem Soc ; 145(9): 5523-5535, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36823736

RESUMEN

Electrides are a unique class of electron-rich materials where excess electrons are localized in interstitial lattice sites as anions, leading to a range of unique properties and applications. While hundreds of electrides have been discovered in recent years, magnetic electrides have received limited attention, with few investigations into their fundamental physics and practical applications. In this work, 51 magnetic electrides (12 antiferromagnetic, 13 ferromagnetic, and 26 interstitial-magnetic) were identified using high-throughput computational screening methods and the latest Materials Project database. Based on their compositions, these magnetic electrides can be classified as magnetic semiconductors, metals, or half-metals, each with unique topological states and excellent catalytic performance for N2 fixation due to their low work functions and excess electrons. The novel properties of magnetic electrides suggest potential applications in spintronics, topological electronics, electron emission, and as high-performance catalysts. This work marks the beginning of a new era in the identification, investigation, and practical applications of magnetic electrides.

3.
Phys Chem Chem Phys ; 25(10): 7338-7343, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36825463

RESUMEN

Two-dimensional (2D) materials with nontrivial band crossings, namely linear or double Weyl points, have been attracting tremendous attention. However, it remains a challenge to find existing 2D materials that host such nontrivial states. Here, based on first-principles calculations and symmetry analysis, we discover that the recently synthesized BL-α borophene is a metal with a tunable double Weyl point. Remarkably, both bands forming the double Weyl point have upward band bending. In addition, it shows an anisotropic band dispersion when away from the double Weyl point. To characterize its anisotropy, we define a quantity G, which could be changed from 1 to infinity when going from the energy of the double Weyl point to the Fermi level. Furthermore, the outer band of the double Weyl point is sensitive to biaxial strain, and could be changed from upward bending to downward bending. During this process, it has a critical case, in which the outer-band becomes flat. The changes in outer-band induce a variation in the density of states around the double Weyl point, thus giving rise to changes in its macroscopic physical properties. Applying a uniaxial strain enables the double Weyl point to transform into a pair of Weyl points by breaking the threefold rotation of BL-α borophene. When breaking the inversion symmetry and in-plane twofold rotation symmetry by a vertical symmetry, the double Weyl point still persisted; meanwhile, an additional pair of linear Weyl points appears on the high-symmetry path, giving rise to a Weyl complex case. Overall, our work thus provides an existing 2D material, BL-α borophene, to study the nontrivial band crossings in 2D.

4.
Phys Chem Chem Phys ; 25(39): 26566-26574, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37753587

RESUMEN

An excellent catalyst generally meets three indicators: high electron mobility, high surface density of states and low Gibbs free energy (ΔG) [H. Luo et al. Nat. Rev. Phys., 2022, 4, 611-624]. Recent studies have confirmed that topological materials exhibit more advantages than conventional precious metals with regard to the above-mentioned indicators. Herein, based on DFT calculations and symmetry analysis, we discovered for the first time that the topological surface states of Mg3Bi2 with a Kagome lattice promote hydrogen evolution reactions (HERs). In particular, there exists a snake-like type-II nodal loop (NL), located on kz = 0 plane in Mg3Bi2. Besides, the NL forms a topologically protected drumhead surface state on the (001) surface. It was found that the ΔG (0.176 eV) value of the (001) surface is comparable to that of the precious metal Pt. Then, through hole doping and strain regulation, it was found that the catalytic activity of Mg3Bi2 is closely related to the drumhead surface state formed by NL. With the above-mentioned results, this study not only provides a promising candidate material for hydrogen electrolysis, but also deepens our understanding of the dominant factors of NL semimetals for the catalytic activity.

5.
Phys Chem Chem Phys ; 24(41): 25403-25410, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36250242

RESUMEN

Topological semimetals with nontrivial band crossing points have attracted widespread interest in recent years. Here, we propose that AB2 (A = Cr, Mo; B = Si, Ge) compounds are topological semimetals that feature a pair of triple points (TPs) on high-symmetry paths in the absence of spin-orbital coupling (SOC). In particular, the existence of this kind of TP is accompanied by a quadratic nodal line (QNL). In addition, we discover that these TPs are movable. Under a triaxial strain, we can change their positions on high-symmetry paths. When considering SOC, TPs transform into two pairs of type-II Dirac points along the high-symmetry path. Akin to TPs without SOC, each pair of Dirac points can also shift their positions on the high-symmetry paths under a triaxial strain. To characterize this property of TPs and Dirac points, we construct an effective model around the TPs and Dirac points, finding that there indeed exists a parameter that could characterize the movable properties for the TPs and Dirac points. According to the bulk-surface correspondence, we also discover that the length of the Fermi arcs that correspond to the nontrivial band crossings are also altered when changing their positions. Meanwhile, the shapes of Fermi arcs are also changed. Therefore, our work provides a platform to study the band crossings that are movable. The controllable fermions are beneficial to utilize the topological materials in nano-devices.

6.
Phys Chem Chem Phys ; 23(10): 6278-6285, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33735359

RESUMEN

Recently, two-dimensional (2-D) materials with a Penta-atomic-configuration such as Penta-graphene have received considerable attention because of their potential applications in electronics, spintronics and ion batteries. Previously, Penta-graphene has been proposed as an excellent anode material for Li-/Na-ion batteries with a high theoretical capacity (1489 mA h g-1). Here, based on the first-principles calculations, we report that a new 2-D material namely Penta-B2C can become another excellent anode material with even higher theoretical capacity for Li-/Na-ion batteries than Penta-graphene. Our results demonstrate that Li/Na atoms can be stably adsorbed on Penta-B2C. Meanwhile, Penta-B2C shows metallic conductivity during the adsorption. Most strikingly, the theoretical capacities of Penta-B2C are as high as 1594 for Li and 2391 mA h g-1 for Na, which are superior to those of the most known 2-D anode materials. Especially, the Na theoretical capacity of Penta-B2C sets a new record among known 2-D anode materials. In addition, Penta-B2C possesses relatively low open-circuit voltage and a low diffusion barrier for ions, which are vital for anode materials. These results highly promise that Penta-B2C can be an excellent anode material with a fast charge/discharge rate and extremely high theoretical capacity for Li-/Na-ion batteries.

7.
Phys Chem Chem Phys ; 23(34): 18770-18776, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612415

RESUMEN

Two-dimensional (2-D) materials, especially carbon allotropes, have larger storage capacity and faster diffusion rate due to their unique structures and are usually used in ion batteries. Recently, a new stable two-dimensional carbon allotrope, namely PAI-graphene, was reported by first-principles calculations. Due to its lightweight and multiple-ring structure, great stability and excellent properties, here, we theoretically reveal the excellent performance of PAI-graphene as an anode material for Li-/Na-ion batteries. Our results show that PAI-graphene has intrinsic metallicity before and after adsorption of Li/Na, which ensures that it has good conductivity when working as an electrode material. In addition, PAI-graphene exhibits quite low open circuit voltage (0.342-0.190 V for Li, 0.339-0.233 V for Na) and diffusion barrier (0.34 eV for Li, 0.17 eV for Na), which indicates its superiority as an anode material. Most noteworthily, the Na storage capacity of PAI-graphene is up to 1674 mA h g-1, which is much higher than that of most 2-D anode materials. Thus, we believe that PAI-graphene can be an outstanding anode material with outstanding performance.

8.
Phys Chem Chem Phys ; 22(39): 22399-22407, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32996503

RESUMEN

Nonsymmorphic symmetry has been proved to protect band crossings in topological semimetals/metals. In this work, based on the symmetry analysis and first-principles calculations, we reveal rich topological phases in compounds Pd4X (X = S, Se), which are protected by nonsymmorphic symmetry. In the absence of spin-orbit coupling (SOC), it shows the coexistence of the type-I Weyl point and type-II Weyl point. Here, due to the screw rotation, the type-I Weyl point takes an hourglass form. However, this hourglass Weyl point can be gapped in the presence of SOC. Furthermore, a combination of nonsymmorphic twofold screw-rotational symmetry and time-reversal symmetry protects a nodal surface. Particularly, this nodal surface is robust against SOC. In addition, a combination of the glide mirror and time-reversal symmetry contributes a nodal line of double degeneracy. In the presence of SOC, there emerges hybridization of type-I and type-II Weyl points. Meanwhile, there also appears a Dirac nodal line-a fourfold degenerate nodal line under SOC, which is protected by nonsymmorphic symmetries. Our works suggest realistic materials to study Weyl nodes of type-I and type-II, and their hybridization, as well as symmetry-protected nodal surfaces and Dirac nodal lines.

9.
Phys Chem Chem Phys ; 22(10): 5847-5854, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32107508

RESUMEN

Topological aspects of electronic structures have received intensive research interest in recent years. Here, we systematically investigate the electronic structure, doping effect and topological signature in a family of realistic compounds Li3-xNaxM (x = 3, 2, 1, 0; M = N, P, As, Sb, Bi). Without considering SOC, their electronic band structures show a doubly degenerate nodal line (NL) near the Fermi level in the Γ-A path. In addition, some compounds including Li2NaN, LiNa2N, Na3N and Na3Bi also exhibit one (or two) pair(s) of triply-degenerate nodal points (TDNPs) in the Γ-A path, locating at both sides of the Γ point. When SOC is taken into account, the band degeneracy of the NLs splits, and the scale of band splitting follows a positive correlation with the atomic weight of the M elements. Due to the band splitting by SOC, most of the Li3-xNaxM compounds show a pair of Dirac points (DPs) near the Fermi level. Very interestingly, we find that these DPs possess different types of band dispersions, namely type-I, type-II and the critical-type. The Fermi arcs from the DPs are identified. Our results indicate that Li3-xNaxM compounds are good candidates to study the novel properties of NLs, TDNPs, and DPs with different slopes of band dispersions.

10.
Phys Chem Chem Phys ; 22(33): 18480-18487, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32778861

RESUMEN

Electrical conductivity, storage capacity and ion diffusion ability are three crucial parameters for battery electrode materials. However, rare existing two-dimensional (2-D) electrode materials can achieve high performances in all these parameters. Here, we report that a 2-D transition-metal phosphide, the Ti2P monolayer, is a promising superior electrode material which realizes high performances in all the parameters mentioned above. The Ti2P monolayer has a stable honeycomb crystal structure. It has a metallic electronic structure with Li/Na adsorption, which ensures good electrical conductivity during the battery operation. We find that Li/Na can chemically bond to the Ti2P substrate, with specific charge exchanges. Our results show the Li/Na capacity in the Ti2P monolayer is about 846 mA h g-1, which is much higher than that of the graphite anode. Remarkably, the Li/Na diffusion barrier on the Ti2P monolayer is only 12-16 meV, which is lower than that in all 2-D anode materials proposed till now. Our work highly promises that theTi2P monolayer can serve as a superior anode material for Li-ion/Na-ion batteries by providing good electrical conductivity, high storage capacity and ultrafast ion diffusion.

11.
Phys Chem Chem Phys ; 22(33): 18447-18453, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32776039

RESUMEN

Because of their promising applications in electronics, topological materials have been much investigated recently. Here, we propose that palladium oxide (PdO) is an excellent topological semimetal with 0-D and 1-D band crossings and definite nontrivial surface states. The 0-D band crossing produces a pair of triply degenerate nodal points, and the 1-D band crossings form two nodal loops in PdO. After spin-orbit coupling (SOC) is included, the triply degenerate nodal points transform into Dirac points, and the nodal loops open small gaps. The SOC gaps at the nodal loops are comparable or lower than those of typical nodal loop materials. These results suggest that PdO can naturally host multiple fermions. Remarkably, all the fermions in PdO manifest definite nontrivial surface states, whereas triply degenerate nodal points and Dirac fermions show Fermi arc surface states, and the nodal loop fermion shows drumhead surface states. The topological band structure for the fermions and their nontrivial surface states are quite promising to be detected in future experiments.

12.
Phys Chem Chem Phys ; 22(35): 20027-20036, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32870207

RESUMEN

Novel spintronic materials combining both magnetism and nontrivial topological electronic structures have attracted increasing attention recently. Here, we systematically studied the doping effects, magnetism, half-metallicity, and topological properties in the family of Fe2-xVxPO5 (x = 0, 0.5, 1, 1.5, 2) compounds. Our results show that Fe2PO5 takes an antiferromagnetic (AFM) ordering with a zero total magnetic moment. Meanwhile, the material hosts a Dirac nodal line and a Weyl nodal line near the Fermi level. V2PO5 is a ferromagnetic (FM) nodal line half-metal with a 100% spin-polarized Weyl nodal line. After doping, we find that Fe1.5V0.5PO5, Fe1V1PO5 and Fe0.5V1.5PO5 all take ferrimagnetic (FiM) ordering, with the Fe and V atoms taking opposite spin directions. Both Fe1.5V0.5PO5 and Fe0.5V1.5PO5 are FiM half-metals. Meanwhile, they show several pairs of fully spin-polarized Weyl points near the Fermi level. Fe1V1PO5 is a FiM semiconductor with different sizes of band gaps in different spin channels. These Fe2-xVxPO5 materials not only provide a good research platform to study the novel properties combining magnetism and nontrivial band topology, but also have promising applications in spintronic applications.

13.
Ecotoxicol Environ Saf ; 155: 17-25, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29494835

RESUMEN

In this study, a new method for the simultaneous quantitative determination of triclopyr and aminopyralid in forage grass, hay, and soil was developed and validated using gas chromatography coupled with electron capture detector (GC-ECD). In this method, a simple and maneuverable esterification reaction was applied to convert the two acidic herbicides into their ester form with methanol. The target compounds were extracted with 1% hydrochloric acid-acetonitrile, esterified, purified by florisil solid-phase extraction cartridge, and detected in a single run by the GC-ECD. The average recoveries using this method, at different fortified levels, ranged from 80% to 104% with intra-day and inter-day RSDs in the range of 1.2-10.8% and 3.3-10.3% for both the herbicides, respectively. The LODs were below 0.02 mg/kg while the LOQs were below 0.05 mg/kg, both of which were much lower than the maximum residue limits (MRLs) of 25-700 mg/kg in pastures, as established by the USA (the code of federal regulations). The open field dissipation and residual analysis in pastures and soil were conducted with the commercial formulation at two locations. With time, both triclopyr and aminopyralid dissipated via first-order kinetics. In forage grass, both compounds degraded rapidly over the first 14- or 21-d period and at a slow rate over the remainder of experimental days. In soil, they degraded at a relatively slow rate, and dissipated steadily to below or close to the LOQ by 60-d post application. The half-lives of triclopyr were 1.4-1.8 d and 6.2-9.0 d and aminopyralid were 1.7-2.1 d and 8.2-10.6 d in terms of forage grass and soil, respectively. The terminal residue results indicated that on 7 d after the treatment, the residues of aminopyralid and triclopyr in forage grass and hay were lower than the MRLs set by the USA. This work can provide guidance on the reasonable use of these herbicides and also provide an analytical method for the determination of triclopyr and aminopyralid in pasture and soil.


Asunto(s)
Ácidos Carboxílicos/análisis , Cromatografía de Gases/métodos , Glicolatos/análisis , Herbicidas/análisis , Piridinas/análisis , Contaminantes del Suelo/análisis , Ácidos Carboxílicos/aislamiento & purificación , Electrones , Glicolatos/aislamiento & purificación , Herbicidas/aislamiento & purificación , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/aislamiento & purificación , Piridinas/aislamiento & purificación , Suelo/química , Contaminantes del Suelo/aislamiento & purificación , Extracción en Fase Sólida
14.
J Phys Condens Matter ; 36(16)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38211322

RESUMEN

This investigation provides a comprehensive exploration into the intricate interplay between topological surface states (TSS) and catalytic performance in two-dimensional (2D) materials, with specific emphasis on monolayer Cu2Se. Leveraging the unique characteristics of nodal loop semimetals (NLSMs), we delve into the precise influence of TSS on catalytic activity, particularly in the domain of CO2electrochemical reduction. Our findings illuminate the central role played by these TSS, arising from the underlying NLSM framework, in sculpting catalytic efficiency. The length of these surface states emerges as a critical determinant of surface density of states (DOSs), a fundamental factor governing catalytic behavior. Extension of these surface states correlates with heightened surface DOSs, yielding lower Gibbs free energies and consequently enhancing catalytic performance, particularly in the electrochemical reduction of CO2. Moreover, we underscore the profound importance of preserving symmetries that protect the nodal loop. The disruption of these symmetries is found to result in a significant degradation of catalytic efficacy, underscoring the paramount significance of topological features in facilitating catalytic processes. Therefore, this study not only elucidates the fundamental role of TSS in dictating the catalytic performance of topological 2D materials but also paves the way for harnessing these unique attributes to drive sustainable and highly efficient catalysis across a diverse spectrum of chemical processes.

15.
iScience ; 27(9): 110708, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39262793

RESUMEN

Topological nodal line semimetals (TNLSMs), which exhibit one-dimensional (1D) band crossing in their electronic band structure, have been predicted to be potential catalysts in electrocatalytic processes. However, the current studies are limited to the TNLSMs where the dispersion around the nodal line is linear in all directions. Here, the potential application of the quadratic nodal line (QNL) semimetal Na2CdSn in hydrogen evolution reaction is explored. Based on the bulk-boundary correspondence, we find that the topological surface states (TSSs) of the QNL are extended in the entire Brillouin zone. A linear relationship between the density of states of the TSSs and the Gibbs free energy is established in Na2CdSn. Remarkably, the best performance of Na2CdSn can be comparable to that of the noble metal Pt. Therefore, our work not only identifies an innovative type of topological catalyst with a QNL state but also confirms the relationship between TSSs and catalytic performance.

16.
J Phys Condens Matter ; 36(1)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748480

RESUMEN

In two-dimensional (2D) scale, controllable topological phase transition between a conventional topological quantum state and a higher-order one has been a challenge currently. Herein, based on first-principles, we report 2D metal-organic frameworks (MOFs) are ideal choice for realizing such topological phase transition. Taking MOF candidate Pd3(C6S6)2as an example, a semimetallic band structure is present at the equilibrium state. Under moderate compressive strain, it features a nontrivial energy gap and corner states, which is evidenced as a second-order topological insulator (SOTI). In addition, the band order for its low-energy bands switches at moderate tensile strain, during which topological phase transition from SOTI and topological semimetal to double Weyl semimetal (DWSM) happens, accompanied by the change in real Chern number formνR=1toνR=0. At the critical point for the phase transition, the system can be characterized as a 2D pseudospin-1 fermion. Beside Pd3(C6S6)2, we further identify the ferromagnetic monolayer Fe3(C6S6)2can also take the DWSM-to-SOTI phase transition, where the topological fermions and corresponding edge/corner states could be fully spin-polarized. This work has for the first time realized topological transition between conventional topological quantum state and a higher-order one in both nonmagnetic and magnetic MOFs.

17.
J Phys Condens Matter ; 35(26)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36990099

RESUMEN

Two-dimensional (2D) half-metal and topological states have been the current research focus in condensed matter physics. Herein, we report a novel 2D material named EuOBr monolayer, which can simultaneously show 2D half-metal and topological fermions. This material shows a metallic state in the spin-up channel but a large insulating gap of 4.38 eV in the spin-down channel. In the conducting spin channel, the EuOBr monolayer shows the coexistence of Weyl points and nodal-lines near the Fermi level. These nodal-lines are classified by type-I, hybrid, closed, and open nodal-lines. The symmetry analysis suggests these nodal-lines are protected by the mirror symmetry, which cannot be broken even spin-orbit coupling is included because the ground magnetization direction in the material is out-of-plane [001]. The topological fermions in the EuOBr monolayer are fully spin-polarized, which can be meaningful for future applications in topological spintronic nano-devices.

18.
Adv Sci (Weinh) ; 10(6): e2205940, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36574466

RESUMEN

Topological materials have been recently regarded as ideal catalysts for heterogeneous reactions due to their surface metallic states and high carrier mobility. However, the underlying relationship between their catalytic performance and topological states is under debate. It has been discovered that the electride 12CaO·7Al2 O3 (C12A7:4e- ) hosts multifold fermions and Fermi arcs on the (001) surface near the Fermi level due to the interstitial electrons. Through the comparison of catalytic performance under different doping and strain conditions, based on the hydrogen evolution process, it has been demonstrated that the excellent catalytic performance indeed originates from topological properties. A linear relationship between the length of Fermi arcs, and Gibbs free energy (ΔGH* ) has been found, which not only provides the direct evidence to link the enhanced catalytic performance and surface Fermi arc states, but also fully clarifies the fundamental mechanism in topological catalysis.

19.
Nanoscale ; 14(5): 2041-2051, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35076048

RESUMEN

Since the discovery of penta-graphene, two-dimensional (2-D) pentagonal-structured materials have been highly expected to have desirable performance because of their unique structures and accompanied physical properties. Hence, based on the first-principles calculations, we performed a systematical study on the structure, stability, mechanical and electronic properties, and potential applications on carbon-based pentagonal materials with binary compositions, namely, Penta-CnX6-n (n = 1, 2, 4, 5; X = B, N, Al, Si, P, Ga, Ge, As). We found that eleven out of thirty-two Penta-CnX6-n have good stability and can be further studied. Among them, two materials, namely, Penta-C4P2 and Penta-C5P are metallic, and others are indirect band gap semiconductors, whose band gaps calculated by the HSE06 functional are in the range of 1.37-6.43 eV, covering the infrared-visible-ultraviolet regions. Furthermore, we found that metallic Penta-CnX6-n can become promising anode materials for Na-ion batteries (NIBs) with high storage capacity, while some semiconducting Penta-CnX6-n can become excellent water splitting photocatalysts. In addition, Penta-C4P2 and Penta-C2Al4 were found to have obvious in-plane negative Poisson's ratio (NPR) of -0.083 and -0.077, respectively. More interestingly, we found that Penta-C2Al4 exhibits a peculiar in-plane half negative Poisson's ratio (H-NPR) with the fundamental mechanism clarified. These outstanding performances endow binary pentagonal materials with excellent application prospects.

20.
iScience ; 25(1): 103543, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34977505

RESUMEN

For electrochemical hydrogen evolution reaction (HER), developing high-performance catalysts without containing precious metals have been a major research focus in the present. Herein, we show the feasibility of HER catalytic enhancement in Ni-based materials based on topological engineering from hybrid Weyl states. Via a high-throughput computational screening from ∼140,000 materials, we identify that a chiral compound NiSi is a hybrid Weyl semimetal (WSM) showing bulk type-I and type-II Weyl nodes and long surface Fermi arcs near the Fermi level. Sufficient evidences verify that topological charge carriers participate in the HER process, and make the certain surface of NiSi highly active with the Gibbs free energy nearly zero (0.07 eV), which is even lower than Pt and locates on the top of the volcano plots. This work opens up a new routine to develop no-precious-metal-containing HER catalysts via topological engineering, rather than traditional defect engineering, doping engineering, or strain engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA