Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 136: 451-459, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923455

RESUMEN

Large-scale metal contamination across the food web is an intractable problem due to increasing pollutant emissions, atmospheric transport, and dry and wet deposition of elements. The present study focus on several trace metals that are rarely studied but have special toxicity, including tin (Sn), antimony (Sb), gold (Au), hafnium (Hf), palladium (Pd), platinum (Pt), ruthenium (Ru), tellurium (Te) and iridium (Ir). We investigated trace metals residues and distribution characteristics, and further evaluated the potential health risks from major daily food intakes in 33 cities in China. Sn, Sb, Ir, Hf, and Au were frequently detected in food samples with the concentrations ranged from ND (not detected) to 24.78 µg/kg ww (wet weight). Eggs exhibited the highest residual level of all detected metals (13.70 ± 14.70 µg/kg ww in sum), while the lowest concentrations were observed in vegetables (0.53 ± 0.17 µg/kg ww in sum). Sn accounting for more than 50% of the total trace metals concentration in both terrestrial and aquatic animal origin foods. In terrestrial plant origin foods, Sn and Ir were the most abundant elements. Hf and Au were the most abundant elements in egg samples. In addition, Sb and Ir showed a clear trophic dilution effect in terrestrial environments, while in aquatic ecosystems, Sn, Hf, and Au exhibited obvious trophic amplification effects. The calculated average estimated daily intake (EDI) via food consumption in five regions of China was 0.09 µg/(kg·day), implying the health risk of aforementioned elements was acceptable.


Asunto(s)
Dieta , Ecosistema , Oligoelementos , Animales , Humanos , Dieta/efectos adversos , Pueblos del Este de Asia , Metales/análisis , Medición de Riesgo , Oligoelementos/análisis
2.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569842

RESUMEN

Liver X receptors (LXRα and LXRß) are oxysterol-activated nuclear receptors that play key roles in cholesterol homeostasis, the central nervous system, and the immune system. We have previously reported that LXRαß-deficient mice are more susceptible to dextran sodium sulfate (DSS)-induced colitis than their WT littermates, and that an LXR agonist protects against colitis in mice mainly via the regulation of the immune system in the gut. We now report that both LXRα and LXRß are expressed in the colonic epithelium and that in aging LXRαß-/- mice there is a reduction in the intensity of goblet cells, mucin (MUC2), TFF3, and estrogen receptor ß (ERß) levels. The cytoplasmic compartment of the surface epithelial cells was markedly reduced and there was a massive invasion of macrophages in the lamina propria. The expression and localization of ß-catenin, α-catenin, and E-cadherin were not changed, but the shrinkage of the cytoplasm led to an appearance of an increase in staining. In the colonic epithelium there was a reduction in the expression of plectin, a hemidesmosome protein whose loss in mice leads to spontaneous colitis, ELOVL1, a fatty acid elongase protein coding gene whose overexpression is found in colorectal cancer, and non-neuronal choline acetyltransferase (ChAT) involved in the regulation of epithelial cell adhesion. We conclude that in aging LXRαß-/- mice, the phenotype in the colon is due to loss of ERß expression.


Asunto(s)
Colitis , Receptor beta de Estrógeno , Ratones , Animales , Receptor beta de Estrógeno/metabolismo , Ratones Noqueados , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colon/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Mucosa Intestinal/metabolismo , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL
3.
Hum Mol Genet ; 29(14): 2451-2459, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32469048

RESUMEN

Rare coding variants have been proven to be one of the significant factors contributing to spermatogenic failure in patients with non-obstructive azoospermia (NOA) and severe oligospermia (SO). To delineate the molecular characteristics of idiopathic NOA and SO, we performed whole-exome sequencing of 314 unrelated patients of Chinese Han origin and verified our findings by comparing to 400 fertile controls. We detected six pathogenic/likely pathogenic variants and four variants of unknown significance, in genes known to cause NOA/SO, and 9 of which had not been earlier reported. Additionally, we identified 20 novel NOA candidate genes affecting 25 patients. Among them, five (BRDT, CHD5, MCM9, MLH3 and ZFX) were considered as strong candidates based on the evidence obtained from murine functional studies and human single-cell (sc)RNA-sequencing data. These genetic findings provide insight into the aetiology of human NOA/SO and pave the way for further functional analysis and molecular diagnosis of male infertility.


Asunto(s)
Azoospermia/genética , Predisposición Genética a la Enfermedad , Infertilidad Masculina/genética , Oligospermia/genética , Adulto , Animales , Azoospermia/patología , ADN Helicasas/genética , Humanos , Infertilidad Masculina/patología , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas MutL/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Oligospermia/patología , Espermatogénesis/genética , Secuenciación del Exoma
4.
Proc Natl Acad Sci U S A ; 116(33): 16507-16512, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31371497

RESUMEN

The retina is an extension of the brain. Like the brain, neurodegeneration of the retina occurs with age and is the cause of several retinal diseases including optic neuritis, macular degeneration, and glaucoma. Liver X receptors (LXRs) are expressed in the brain where they play a key role in maintenance of cerebrospinal fluid and the health of dopaminergic neurons. Herein, we report that LXRs are expressed in the retina and optic nerve and that loss of LXRß, but not LXRα, leads to loss of ganglion cells in the retina. In the retina of LXRß-/- mice, there is an increase in amyloid A4 and deposition of beta-amyloid (Aß) aggregates but no change in the level of apoptosis or autophagy in the ganglion cells and no activation of microglia or astrocytes. However, in the optic nerve there is a loss of aquaporin 4 (AQP4) in astrocytes and an increase in activation of microglia. Since loss of AQP4 and microglial activation in the optic nerve precedes the loss of ganglion cells, and accumulation of Aß in the retina, the cause of the neuronal loss appears to be optic nerve degeneration. In patients with optic neuritis there are frequently AQP4 autoantibodies which block the function of AQP4. LXRß-/- mouse is another model of optic neuritis in which AQP4 antibodies are not detectable, but AQP4 function is lost because of reduction in its expression.


Asunto(s)
Receptores X del Hígado/deficiencia , Degeneración Nerviosa/patología , Nervio Óptico/patología , Retina/patología , Péptidos beta-Amiloides/metabolismo , Animales , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Femenino , Receptores X del Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Oligodendroglía/metabolismo , Nervio Óptico/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
5.
Mol Reprod Dev ; 87(9): 978-985, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32770619

RESUMEN

Retinoic acid (RA), the active metabolite of vitamin A, is one of the most important factors regulating spermatogenesis. RA activates downstream pathways through its receptors (retinoic acid receptor alpha [RARA], retinoic acid receptor beta, and retinoic acid receptor gamma [RARG]) and retinoid X receptors (retinoid X receptor alpha [RXRA], retinoid X receptor beta [RXRB], and retinoid X receptor gamma [RXRG]). These receptors may serve as therapeutic targets for infertile men. However, the localization and expression of retinoid receptors in normal and infertile men were unknown. In this study, we found RARA and RARG were mostly localized in spermatocytes and round spermatids, RXRB was mainly expressed in Sertoli cells, and RXRG was expressed in most cell types in the fertile human testis. The localization of RARA, RARG, RXRB, and RXRG in men with hypospermatogenesis (HYPO) was similar to that of men with normal fertility. In addition, the messenger RNA expression levels of RARA, RARG, RXRA, RXRB, and RXRG were significantly decreased in men with Sertoli cell-only syndrome (SCOS) and maturational arrest (MA), but not in men with HYPO. These results suggest that reduced levels of RARA, RARG, RXRB, RXRA, and RXRG are more closely associated with SCOS and MA spermatogenetic failure. These results could contribute to the development of new molecular indicators of spermatogenic dysfunction and might provide novel therapeutic targets for treating male infertility.


Asunto(s)
Infertilidad Masculina , Receptores de Ácido Retinoico , Testículo/metabolismo , Adulto , Estudios de Casos y Controles , Expresión Génica , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Oligospermia/genética , Oligospermia/metabolismo , Oligospermia/patología , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Síndrome de Sólo Células de Sertoli/genética , Síndrome de Sólo Células de Sertoli/metabolismo , Síndrome de Sólo Células de Sertoli/patología , Células de Sertoli/metabolismo , Células de Sertoli/patología , Espermatogénesis/fisiología , Testículo/patología , Distribución Tisular
6.
Proc Natl Acad Sci U S A ; 114(19): E3816-E3822, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439009

RESUMEN

As estrogen receptor ß-/- (ERß-/-) mice age, the ventral prostate (VP) develops increased numbers of hyperplastic, fibroplastic lesions and inflammatory cells. To identify genes involved in these changes, we used RNA sequencing and immunohistochemistry to compare gene expression profiles in the VP of young (2-mo-old) and aging (18-mo-old) ERß-/- mice and their WT littermates. We also treated young and old WT mice with an ERß-selective agonist and evaluated protein expression. The most significant findings were that ERß down-regulates androgen receptor (AR) signaling and up-regulates the tumor suppressor phosphatase and tensin homolog (PTEN). ERß agonist increased expression of the AR corepressor dachshund family (DACH1/2), T-cadherin, stromal caveolin-1, and nuclear PTEN and decreased expression of RAR-related orphan receptor c, Bcl2, inducible nitric oxide synthase, and IL-6. In the ERß-/- mouse VP, RNA sequencing revealed that the following genes were up-regulated more than fivefold: Bcl2, clusterin, the cytokines CXCL16 and -17, and a marker of basal/intermediate cells (prostate stem cell antigen) and cytokeratins 4, 5, and 17. The most down-regulated genes were the following: the antioxidant gene glutathione peroxidase 3; protease inhibitors WAP four-disulfide core domain 3 (WFDC3); the tumor-suppressive genes T-cadherin and caveolin-1; the regulator of transforming growth factor ß signaling SMAD7; and the PTEN ubiquitin ligase NEDD4. The role of ERß in opposing AR signaling, proliferation, and inflammation suggests that ERß-selective agonists may be used to prevent progression of prostate cancer, prevent fibrosis and development of benign prostatic hyperplasia, and treat prostatitis.


Asunto(s)
Envejecimiento/metabolismo , Regulación hacia Abajo , Receptor beta de Estrógeno/metabolismo , Próstata/metabolismo , Receptores Androgénicos/biosíntesis , Transducción de Señal , Envejecimiento/genética , Envejecimiento/patología , Andrógenos/metabolismo , Animales , Quimiocina CXCL16/biosíntesis , Quimiocina CXCL16/genética , Quimiocinas CXC/biosíntesis , Quimiocinas CXC/genética , Clusterina/biosíntesis , Clusterina/genética , Receptor beta de Estrógeno/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinas/biosíntesis , Queratinas/genética , Masculino , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/biosíntesis , Ubiquitina-Proteína Ligasas Nedd4/genética , Fosfohidrolasa PTEN/biosíntesis , Fosfohidrolasa PTEN/genética , Próstata/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Androgénicos/genética , Proteína smad7/biosíntesis , Proteína smad7/genética
7.
Mol Reprod Dev ; 86(9): 1199-1209, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31318116

RESUMEN

G kinase-anchoring protein 1 (GKAP1) is a G kinase-associated protein that is conserved in many eutherians and is mainly expressed in the testis, especially in spermatocytes and round spermatids. The function of GKAP1 in the testis is largely unknown. Here, we revealed that deletion of GKAP1 led to an increase in sperm production with swollen epididymis, and germ cell apoptosis was found to decrease in GKAP1 knock-out mice. Further investigations showed that a deficiency of GKAP1 could partly change the cellular location of cGK-Iα and increase the amount of active cAMP response element-binding protein (CREB) in the nucleus. Therefore, the expression of a particular inhibitor of apoptosis proteins (IAPs) was upregulated because of the activation of CREB, and this increase in IAPs was associated with a decrease in the level of activated caspase-3. These results suggest that a deficiency of GKAP1 in mouse testis could increase sperm production through a reduction of the spontaneous apoptosis of germ cells in the testis, possibly because of a change in the activity of the cGK-Iα pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Núcleo Celular/metabolismo , Espermatozoides/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína de Unión a CREB , Caspasa 3/metabolismo , Masculino , Ratones , Ratones Noqueados , Recuento de Espermatozoides , Espermatozoides/citología
8.
Proc Natl Acad Sci U S A ; 113(42): 11883-11888, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27688768

RESUMEN

The aryl hydrocarbon receptor (AhR) is now recognized as an important physiological regulator in the immune and reproductive systems, and in the development of the liver and vascular system. AhR regulates cell cycle, cell proliferation, and differentiation through interacting with other signaling pathways, like estrogen receptor α (ERα), androgen receptor (AR), and Notch signaling. In the present study, we investigated Notch and estrogen signaling in AhR-/- mice. We found low fertility with degenerative changes in the testes, germ cell apoptosis, and a reduced number of early spermatids. There was no change in aromatase, AR, ERα, or ERß expression in the testis and no detectable change in serum estrogen levels. However, expression of Notch receptors (Notch1 and Notch3) and their target Hairy and Enhancer of Split homolog 1 (HES1) was reduced. In addition, the testosterone level was slightly reduced in the serum. In the mammary fat pad, AhR appeared to regulate estrogen signaling because, in AhR-/- males, there was significant growth of the mammary ducts with high expression of ERα in the ductal epithelium. The enhanced mammary ductal growth appears to be related to overexpression of ERα accompanied by a high proliferation index, whereas the reduced fertility appears to be related defects in Notch signaling that leads to reduced expression of HES1 and, consequently, early maturation of spermatocytes and a depletion of primary spermatids. Previous reports have indicated that AhR pathway is associated with infertility in men. Our results provide a mechanistic explanation for this defect.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Receptor alfa de Estrógeno/metabolismo , Receptores de Hidrocarburo de Aril/deficiencia , Receptores Notch/metabolismo , Transducción de Señal , Animales , Apoptosis/genética , Aromatasa/metabolismo , Biomarcadores , Proliferación Celular , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Fertilidad/genética , Eliminación de Gen , Expresión Génica , Células Germinativas/metabolismo , Inmunohistoquímica , Masculino , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Noqueados , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Espermatocitos/metabolismo , Testículo/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(27): 7614-9, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27335465

RESUMEN

The etiology of peripheral squamous cell lung cancer (PSCCa) remains unknown. Here, we show that this condition spontaneously develops in mice in which the genes for two oxysterol receptors, Liver X Receptor (LXR) α (Nr1h3) and ß (Nr1h2), are inactivated. By 1 y of age, most of these mice have to be euthanized because of severe dyspnea. Starting at 3 mo, the lungs of LXRα,ß(Dko) mice, but not of LXRα or LXRß single knockout mice, progressively accumulate foam cells, so that by 1 y, the lungs are covered by a "golden coat." There is infiltration of inflammatory cells and progressive accumulation of lipid in the alveolar wall, type 2 pneumocytes, and macrophages. By 14 mo, there are three histological lesions: one resembling adenomatous hyperplasia, one squamous metaplasia, and one squamous cell carcinoma characterized by expression of transformation-related protein (p63), sex determining region Y-box 2 (Sox2), cytokeratin 14 (CK14), and cytokeratin 13 (CK13) and absence of thyroid transcription factor 1 (TTF1), and prosurfactant protein C (pro-SPC). RNA sequencing analysis at 12 mo confirmed a massive increase in markers of M1 macrophages and lymphocytes. The data suggest a previously unidentified etiology of PSCCa: cholesterol dysregulation and M1 macrophage-predominant lung inflammation combined with damage to, and aberrant repair of, lung tissue, particularly the peripheral parenchyma. The results raise the possibility that components of the LXR signaling may be useful targets in the treatment of PSCCa.


Asunto(s)
Metabolismo de los Lípidos , Receptores X del Hígado/fisiología , Neoplasias Pulmonares/etiología , Pulmón/metabolismo , Neoplasias de Células Escamosas/etiología , Células Epiteliales Alveolares/metabolismo , Animales , Fibroblastos/metabolismo , Homeostasis , Pulmón/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Neumonía/etiología , Análisis de Secuencia de ARN
10.
Proc Natl Acad Sci U S A ; 112(45): 14006-11, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26504234

RESUMEN

The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRß, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Hormonas Tiroideas/metabolismo , Análisis de Varianza , Animales , Composición Corporal/fisiología , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Inmunohistoquímica , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Nucleares Huérfanos/genética , Hormona Liberadora de Tirotropina/metabolismo
11.
Am J Physiol Endocrinol Metab ; 312(4): E357-E367, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28270440

RESUMEN

Liver X receptors, including LXRα and LXRß, are known to be master regulators of liver lipid metabolism. Activation of LXRα increases hepatic lipid storage in lipid droplets (LDs). 17ß-Hydroxysteroid dehydrogenase-13 (17ß-HSD13), a recently identified liver-specific LD-associated protein, has been reported to be involved in the development of nonalcoholic fatty liver disease. However, little is known about its transcriptional regulation. In the present study, we aimed at determining whether 17ß-HSD13 gene transcription is controlled by LXRs. We found that treatment with T0901317, a nonspecific LXR agonist, increased both 17ß-HSD13 mRNA and protein levels in cultured hepatocytes. It also significantly upregulated hepatic 17ß-HSD13 expression in wild-type (WT) and LXRß-/- mice but not in LXRα-/- mice. Basal expression of 17ß-HSD13 in the livers of LXRα-/- mice was lower than that in the livers of WT and LXRß-/- mice. Moreover, induction of hepatic 17ß-HSD13 expression by T0901317 was almost completely abolished in SREBP-1c-/- mice. Bioinformatics analysis revealed a consensus sterol regulatory element (SRE)-binding site in the promoter region of the 17ß-HSD13 gene. A 17ß-HSD13 gene promoter-driven luciferase reporter and ChIP assays further confirmed that the 17ß-HSD13 gene was under direct control of SREBP-1c. Collectively, these findings demonstrate that LXRα activation induces 17ß-HSD13 expression in a SREBP-1c-dependent manner. 17ß-HSD13 may be involved in the development of LXRα-mediated fatty liver.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/metabolismo , Hepatocitos/metabolismo , Receptores X del Hígado/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/genética , Animales , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hidrocarburos Fluorados/farmacología , Gotas Lipídicas/metabolismo , Receptores X del Hígado/agonistas , Receptores X del Hígado/genética , Ratones , Ratones Noqueados , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Sulfonamidas/farmacología , Activación Transcripcional
12.
Am J Respir Crit Care Med ; 194(10): 1219-1232, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27149013

RESUMEN

RATIONALE: Progranulin, a widely expressed protein, has multiple physiological functions. The functional role of progranulin in the host response to sepsis remains unknown. OBJECTIVES: To assess the role of progranulin in the host response to sepsis. METHODS: Effects of progranulin on host response to sepsis were determined. MEASUREMENTS AND MAIN RESULTS: Progranulin concentrations were significantly elevated in adult (n = 74) and pediatric (n = 26) patients with sepsis relative to corresponding healthy adult (n = 36) and pediatric (n = 17) control subjects, respectively. By using a low-lethality model of nonsevere sepsis, we observed that progranulin deficiency not only increased mortality but also decreased bacterial clearance during sepsis. The decreased host defense to sepsis in progranulin-deficient mice was associated with reduced macrophage recruitment, with correspondingly impaired chemokine CC receptor ligand 2 (CCL2) production in peritoneal lavages during the early phase of sepsis. Progranulin derived from hematopoietic cells contributed to host defense in sepsis. Therapeutic administration of recombinant progranulin not only rescued impaired host defense in progranulin-deficient mice after nonsevere sepsis but also protected wild-type mice against a high-lethality model of severe sepsis. Progranulin-mediated protection against sepsis was closely linked to improved peritoneal macrophage recruitment. In addition, CCL2 treatment of progranulin-deficient mice improved survival and decreased peritoneal bacterial loads during sepsis, at least in part through promotion of peritoneal macrophage recruitment. CONCLUSIONS: This proof-of-concept study supports a central role of progranulin-dependent macrophage recruitment in host defense to sepsis, opening new opportunities to host-directed therapeutic strategy that manipulate host immune response in the treatment of sepsis.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/inmunología , Macrófagos Peritoneales/inmunología , Sepsis/sangre , Sepsis/inmunología , Adulto , Animales , Niño , Femenino , Granulinas , Humanos , Inmunidad Celular/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Progranulinas
13.
Proc Natl Acad Sci U S A ; 110(9): 3543-8, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401502

RESUMEN

A therapeutic goal in the treatment of certain CNS diseases, including multiple sclerosis, amyotrophic lateral sclerosis, and Parkinson disease, is to down-regulate inflammatory pathways. Inflammatory molecules produced by microglia are responsible for removal of damaged neurons, but can cause collateral damage to normal neurons located close to defective neurons. Although estrogen can inactivate microglia and inhibit the recruitment of T cells and macrophages into the CNS, there is controversy regarding which of the two estrogen receptors (ERs), ERα or ERß, mediates the beneficial effects in microglia. In this study, we found that ERß, but not ERα, is expressed in microglia. Using the experimental autoimmune encephalomyelitis (EAE) model in SJL/J mice, we evaluated the benefit of an ERß agonist as a modulator of neuroinflammation. Treatment of EAE mice with LY3201, a selective ERß agonist provided by Eli Lilly, resulted in marked reduction of activated microglia in the spinal cord. LY3201 down-regulated the nuclear transcription factor NF-κB, as well as the NF-κB-induced gene inducible nitric oxide synthase in microglia and CD3(+) T cells. In addition, LY3201 inhibited T-cell reactivity through regulation of indoleamine-2,3-dioxygenase. In the EAE model, treatment with LY3201 decreased mortality in the first 2 wk after disease onset, and also reduced the severity of symptoms in mice surviving for 4 wk. Our data show that ERß-selective agonists, by modulating the immune system in both microglia and T cells, offer promise as a useful class of drugs for treating degenerative diseases of the CNS.


Asunto(s)
Benzopiranos/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Receptor beta de Estrógeno/metabolismo , Microglía/metabolismo , Terapia Molecular Dirigida , Linfocitos T/metabolismo , Animales , Benzopiranos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/patología , Receptor alfa de Estrógeno/metabolismo , Femenino , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/patología , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/enzimología , Médula Espinal/patología , Linfocitos T/efectos de los fármacos , Linfocitos T/patología
14.
Molecules ; 21(11)2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27869736

RESUMEN

Cytokines are key immunoregulatory molecules that regulate T lymphocyte-mediated immune responses and inflammatory reactions. We determined whether there is aberrant expression of interleukin-27 (IL-27) in rheumatoid arthritis (RA) patients and investigated the clinical significance of these changes. IL-27 is a key cellular factor that regulates the differentiation of CD4+ T cells, which can secrete interleukin-10 (IL-10) and interleukin-17 (IL-17) in vivo. Concentrations of serum IL-27 in 67 RA patients, and 36 sex- and age-matched control subjects were measured by enzyme-linked immunosorbent assay (ELISA). Results showed that concentrations of serum IL-27 in all RA patients were significantly higher than in healthy control subjects, and there was a significant and positive correlation between serum IL-27 levels and disease activity in all RA patients. Levels of serum IL-27 in RA patients were significantly correlated with disease activity score in 28 joints (DAS28). Moreover, immunosuppressive treatment with leflunomide downregulated the levels of IL-27 in active RA patients. Therefore, the elevated production of circulating T cell inflammatory factors contributes to the pathogenesis of RA, and serum IL-27 could potentially serve as a new biomarker of RA disease activity.


Asunto(s)
Artritis Reumatoide/inmunología , Interleucinas/sangre , Linfocitos T/inmunología , Regulación hacia Arriba , Adulto , Anciano , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
15.
Inflamm Res ; 64(11): 885-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26337346

RESUMEN

OBJECTIVE: Chronic rhinosinusitis (CRS), which includes CRS without nasal polyposis (CRSsNP) and with nasal polyposis (CRSwNP), shows imbalance of helper T cells (Th) and regulatory T cells (Treg). The balance of Th and Treg cells is orchestrated by dendritic cells (DCs). Recent studies show functions of DCs can be regulated by microRNAs (miRNAs or miRs). This study is aimed to investigate miRNAs expression profiles of peripheral blood DCs in CRS. METHODS: Peripheral blood samples of 30 patients with CRS and 7 patients with nasal septum deviation alone were collected. CD14(+) monocytes were isolated from these samples and differentiated into dendritic cells (DCs). Small RNAs were extracted from mature DCs and reversely transcribed into cDNA by Mir-XTM miRNA First-Strand synthesis method. MiRNA microarrays were used for miRNA expression analysis. Microarray results were validated by real-time PCR performed on five top list target genes. RESULTS: MiRNA microarrays showed that DCs from different types of patients have different sets of differential expressed miRNAs when comparing with Controls; they also share 31 commonly changed miRNAs among all three groups of CRS patients. Of these 31 miRNAs, 5 miRNAs were up-regulated and 25 miRNAs were down-regulated in all three types of CRS, while MiR-1290 was down-regulated in CRSsNP but up-regulated in both atopic CRSwNP and non-atopic CRSwNP. CONCLUSIONS: By comparing miRNA gene expression patterns in 3 types of CRS patients, we have been able to identify candidate miRNAs that might mediate the core pathogenesis of CRS through regulating dendritic cells. These miRNAs could serve as potential therapeutic targets for CRS.


Asunto(s)
Células Dendríticas/inmunología , MicroARNs/metabolismo , Rinitis/genética , Sinusitis/genética , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular , Enfermedad Crónica , Células Dendríticas/citología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Rinitis/inmunología , Sinusitis/inmunología , Adulto Joven
16.
Proc Natl Acad Sci U S A ; 109(32): 13112-7, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22826221

RESUMEN

Parkinson disease (PD) is a progressive neurodegenerative disease whose progression may be slowed, but at present there is no pharmacological intervention that would stop or reverse the disease. Liver X receptor ß (LXRß) is a member of the nuclear receptor super gene family expressed in the central nervous system, where it is important for cortical layering during development and survival of dopaminergic neurons throughout life. In the present study we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of LXRß as a target for prevention or treatment of PD. The dopaminergic neurons of the substantia nigra of LXRß(-/-) mice were much more severely affected by MPTP than were those of their WT littermates. In addition, the number of activated microglia and GFAP-positive astrocytes was higher in the substantia nigra of LXRß(-/-) mice than in WT littermates. Administration of the LXR agonist GW3965 to MPTP-treated WT mice protected against loss of dopaminergic neurons and of dopaminergic fibers projecting to the striatum, and resulted in fewer activated microglia and astroglia. Surprisingly, LXRß was not expressed in the neurons of the substantia nigra but in the microglia and astroglia. We conclude that LXR agonists may have beneficial effects in treatment of PD by modulating the cytotoxic functions of microglia.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Trastornos Parkinsonianos/metabolismo , Sustancia Negra/citología , Análisis de Varianza , Animales , Astrocitos/metabolismo , Benzoatos/farmacología , Bencilaminas/farmacología , Proteína Ácida Fibrilar de la Glía , Inmunohistoquímica , Receptores X del Hígado , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Nucleares Huérfanos/antagonistas & inhibidores , Receptores Nucleares Huérfanos/genética , Trastornos Parkinsonianos/prevención & control , Trastornos Parkinsonianos/terapia
17.
Proc Natl Acad Sci U S A ; 109(19): 7493-8, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22529354

RESUMEN

Anxiety disorders are the most prevalent mental disorders in adolescents in the United States. Female adolescents are more likely than males to be affected with anxiety disorders, but less likely to have behavioral and substance abuse disorders. The prefrontal cortex (PFC), amygdala, and dorsal raphe are known to be involved in anxiety disorders. Inhibitory input from the PFC to the amygdala controls fear and anxiety typically originating in the amygdala, and disruption of the inhibitory input from the PFC leads to anxiety, fear, and personality changes. Recent studies have implicated liver X receptor ß (LXRß) in key neurodevelopmental processes and neurodegenerative diseases. In the present study, we used elevated plus-maze, startle and prepulse inhibition, open field, and novel object recognition tests to evaluate behavior in female LXRß KO (LXRß(-/-)) mice. We found that the female LXRß(-/-) mice were anxious with impaired behavioral responses but normal locomotion and memory. Immunohistochemistry analysis revealed decreased expression of the enzyme responsible for GABA synthesis, glutamic acid decarboxylase (65+67), in the ventromedial PFC. Expression of tryptophan hydroxylase 2 in the dorsal raphe was normal. We conclude that the anxiogenic phenotype in female LXRß(-/-) mice is caused by reduced GABAergic input from the ventromedial PFC to the amygdala.


Asunto(s)
Ansiedad/psicología , Glutamato Descarboxilasa/metabolismo , Receptores Nucleares Huérfanos/deficiencia , Corteza Prefrontal/enzimología , Adolescente , Animales , Ansiedad/fisiopatología , Miedo/fisiología , Miedo/psicología , Femenino , Humanos , Inmunohistoquímica , Receptores X del Hígado , Masculino , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/fisiología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Factores Sexuales , Ácido gamma-Aminobutírico/biosíntesis
18.
Proc Natl Acad Sci U S A ; 109(5): 1708-12, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307635

RESUMEN

An estrogen receptor (ER) ß ligand (LY3201) with a preference for ERß over ERα was administered in s.c. pellets releasing 0.04 mg/d. The brains of these mice were examined 3 d after treatment had begun. Although estradiol-17ß is known to increase spine density and glutaminergic signaling, as measured by Golgi staining, a clear reduction in spines was evident on the dendritic branches in LY3201-treated mice but no morphological alteration and no difference in the number of dendritic spines on dendritic stems were observed. In the LY3201-treatment group, there was higher expression of glutamic acid decarboxylase (GAD) in layer V of cortex and in the CA1 of hippocampus, more GAD(+) terminals surrounding the pyramidal neurons and less glutamate receptor (NMDAR) on the neurons in layer V. There were no alterations in expression of Iba1 or in Olig2 or CNPase. However, GFAP(+) astrocytes were increased in the LY3201-treatment group. There were also more projections characteristic of activated astrocytes and increased expression of glutamine synthetase (GS). No expression of ERß was detectable in the nuclei of astrocytes. Clearly, LY3201 caused a shift in the balance between excitatory and inhibitory neurotransmission in favor of inhibition. This shift was due in part to increased synthesis of GABA and increased removal of glutamate from the synaptic cleft by astrocytes. The data reveal that treatment with a selective ERß agonist results in changes opposite to those reported in estradiol-17ß-treated mice and suggests that ERα and ERß play opposing roles in the brain.


Asunto(s)
Benzopiranos/farmacología , Encéfalo/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Receptor beta de Estrógeno/efectos de los fármacos , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo , Animales , Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Receptor beta de Estrógeno/metabolismo , Ligandos , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Environ Pollut ; 360: 124675, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39103035

RESUMEN

Nowadays, traditional single-omics study is not enough to explain the causality between molecular alterations and toxicity endpoints for environmental pollutants. With the development of high-throughput sequencing technology and high-resolution mass spectrometry technology, the integrative analysis of multi-omics has become an efficient strategy to understand holistic biological mechanisms and to uncover the regulation network in specific biological processes. This review summarized sample preparation methods, integration analysis tools and the application of multi-omics integration analyses in environmental toxicology field. Currently, omics methods have been widely applied being as the sensitivity of early biological response, especially for low-dose and long-term exposure to environmental pollutants. Integrative omics can reveal the overall changes of genes, proteins, and/or metabolites in the cells, tissues or organisms, which provide new insights into revealing the overall toxicity effects, screening the toxic targets, and exploring the underlying molecular mechanism of pollutants.


Asunto(s)
Ecotoxicología , Contaminantes Ambientales , Proteómica , Contaminantes Ambientales/toxicidad , Ecotoxicología/métodos , Genómica , Metabolómica , Animales , Humanos , Multiómica
20.
Int J Biol Sci ; 19(9): 2848-2859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324952

RESUMEN

Liver X receptors (LXRαß) play essential roles in the maintenance of the normal functions of macrophages, in modulation of immune system responses and cholesterol homeostasis. We have reported that LXRαß-/- mice develop squamous cell lung cancer. We now report that those LXRαß-/- mice, which live to 18-months of age, spontaneously develop a second type of lung cancer resembling a rare subtype of NSCLC (TTF-1 and P63-positive). The lesions are characterized as follows: a high proliferation rate; a marked accumulation of abnormal macrophages; an increase in the number of regulatory T cells; a remarkably low level of CD8+ cytotoxic T lymphocytes; enhanced TGFß signaling; an increased expression of matrix metalloproteinases accompanied by degradation of lung collagen; and a loss of estrogen receptor ß (ERß). Because NSCLC is associated with cigarette smoking, we investigated the possible links between loss of LXRαß and CS. A Kaplan-Meier Plotter database revealed reduced expression of LXRαß and ERß was correlated with low overall survival (OS). Thus, reduction of LXRαß expression by cigarette smoking may be one mechanism through which CS causes lung cancer. The possibility that maintenance of LXRαß and ERß signaling could be used in the treatment of NSCLC needs further investigation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Receptores X del Hígado/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA