Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(12): 100684, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993102

RESUMEN

Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.


Asunto(s)
Fasciola hepatica , Animales , Humanos , Fasciola hepatica/fisiología , Proteómica , Secretoma , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
PLoS Pathog ; 18(1): e1010226, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007288

RESUMEN

The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Fasciola hepatica/inmunología , Proteínas del Helminto/inmunología , Lectina de Unión a Manosa/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Animales , Proteínas del Helminto/metabolismo , Humanos , Inmunidad Innata/inmunología , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Serpinas/inmunología , Serpinas/metabolismo
3.
BMC Genomics ; 23(1): 419, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35659245

RESUMEN

BACKGROUND: MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in organisms ranging from viruses to mammals. There is great relevance in understanding how miRNAs regulate genes involved in the growth, development, and maturation of the many parasitic worms (helminths) that together afflict more than 2 billion people. RESULTS: Here, we describe the miRNAs expressed by each of the predominant intra-mammalian development stages of Fasciola hepatica, a foodborne flatworm that infects a wide range of mammals worldwide, most importantly humans and their livestock. A total of 124 miRNAs were profiled, 72 of which had been previously reported and three of which were conserved miRNA sequences described here for the first time. The remaining 49 miRNAs were novel sequences of which, 31 were conserved with F. gigantica and the remaining 18 were specific to F. hepatica. The newly excysted juveniles express 22 unique miRNAs while the immature liver and mature bile duct stages each express 16 unique miRNAs. We discovered several sequence variant miRNAs (IsomiRs) as well as miRNA clusters that exhibit strict temporal expression paralleling parasite development. Target analysis revealed the close association between miRNA expression and stage-specific changes in the transcriptome; for example, we identified specific miRNAs that target parasite proteases known to be essential for intestinal wall penetration (cathepsin L3). Moreover, we demonstrate that miRNAs fine-tune the expression of genes involved in the metabolic pathways that allow the parasites to move from an aerobic external environment to the anerobic environment of the host. CONCLUSIONS: These results provide novel insight into the regulation of helminth parasite development and identifies new genes and miRNAs for therapeutic development to limit the virulence and pathogenesis caused by F. hepatica.


Asunto(s)
Fasciola hepatica , MicroARNs , Parásitos , Animales , Fasciola hepatica/genética , Interacciones Huésped-Parásitos/genética , Humanos , Mamíferos/genética , MicroARNs/genética , Parásitos/genética , Transcriptoma
4.
Epidemiol Infect ; 150: e128, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35723031

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) intracellular life-cycle, two large polyproteins, pp1a and pp1ab, are produced. Processing of these by viral cysteine proteases, the papain-like protease (PLpro) and the chymotrypsin-like 3C-like protease (3CL-pro) release non-structural proteins necessary for the establishment of the viral replication and transcription complex (RTC), crucial for viral replication. Hence, these proteases are considered prime targets against which anti-coronavirus disease 2019 (COVID-19) drugs could be developed. Here, we describe the expression of a highly soluble and functionally active recombinant 3CL-pro using Escherichia coli BL21 cells. We show that the enzyme functions in a dimeric form and exhibits an unexpected inhibitory profile because its activity is potently blocked by serine rather than cysteine protease inhibitors. In addition, we assessed the ability of our 3CL-pro to function as a carrier for the receptor binding domain (RBD) of the Spike protein. The co-expressed chimeric protein, 3CLpro-RBD, did not exhibit 3CL-pro activity, but its enhanced solubility made purification easier and improved RBD antigenicity when tested against serum from vaccinated individuals in ELISAs. Chimeric proteins containing the 3CL-pro could represent an innovative approach to developing new COVID-19 vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Vacunas contra la COVID-19 , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas , SARS-CoV-2/genética
5.
J Nat Prod ; 85(5): 1315-1323, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35549259

RESUMEN

Cold water benthic environments are a prolific source of structurally diverse molecules with a range of bioactivities against human disease. Specimens of a previously chemically unexplored soft coral, Duva florida, were collected during a deep-sea cruise that sampled marine invertebrates along the Irish continental margin in 2018. Tuaimenal A (1), a cyclized merosesquiterpenoid representing a new carbon scaffold with a highly substituted chromene core, was discovered through exploration of the soft coral secondary metabolome via NMR-guided fractionation. The absolute configuration was determined through vibrational circular dichroism. Functional biochemical assays and in silico docking experiments found tuaimenal A selectively inhibits the viral main protease (3CLpro) of SARS-CoV-2.


Asunto(s)
Antozoos , COVID-19 , Animales , Antivirales/química , Antivirales/farmacología , Florida , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2
6.
BMC Genomics ; 22(1): 46, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430759

RESUMEN

BACKGROUND: The major pathogenesis associated with Fasciola hepatica infection results from the extensive tissue damage caused by the tunnelling and feeding activity of immature flukes during their migration, growth and development in the liver. This is compounded by the pathology caused by host innate and adaptive immune responses that struggle to simultaneously counter infection and repair tissue damage. RESULTS: Complementary transcriptomic and proteomic approaches defined the F. hepatica factors associated with their migration in the liver, and the resulting immune-pathogenesis. Immature liver-stage flukes express ~ 8000 transcripts that are enriched for transcription and translation processes reflective of intensive protein production and signal transduction pathways. Key pathways that regulate neoblast/pluripotent cells, including the PI3K-Akt signalling pathway, are particularly dominant and emphasise the importance of neoblast-like cells for the parasite's rapid development. The liver-stage parasites display different secretome profiles, reflecting their distinct niche within the host, and supports the view that cathepsin peptidases, cathepsin peptidase inhibitors, saposins and leucine aminopeptidases play a central role in the parasite's destructive migration, and digestion of host tissue and blood. Immature flukes are also primed for countering immune attack by secreting immunomodulating fatty acid binding proteins (FABP) and helminth defence molecules (FhHDM). Combined with published host microarray data, our results suggest that considerable immune cell infiltration and subsequent fibrosis of the liver tissue exacerbates oxidative stress within parenchyma that compels the expression of a range of antioxidant molecules within both host and parasite. CONCLUSIONS: The migration of immature F. hepatica parasites within the liver is associated with an increase in protein production, expression of signalling pathways and neoblast proliferation that drive their rapid growth and development. The secretion of a defined set of molecules, particularly cathepsin L peptidases, peptidase-inhibitors, saponins, immune-regulators and antioxidants allow the parasite to negotiate the liver micro-environment, immune attack and increasing levels of oxidative stress. This data contributes to the growing F. hepatica -omics information that can be exploited to understand parasite development more fully and for the design of novel control strategies to prevent host liver tissue destruction and pathology.


Asunto(s)
Fasciola hepatica , Animales , Fasciola hepatica/genética , Crecimiento y Desarrollo , Hígado , Fosfatidilinositol 3-Quinasas , Proteómica , Transcriptoma
7.
BMC Genomics ; 22(1): 274, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33858339

RESUMEN

BACKGROUND: Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host-parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). RESULTS: RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). CONCLUSIONS: In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts.


Asunto(s)
Carpas , Trematodos , Animales , Carpas/genética , Cromatografía Liquida , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Filogenia , Espectrometría de Masas en Tándem , Transcriptoma , Trematodos/genética
8.
Vet Res ; 52(1): 99, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215335

RESUMEN

The immunomodulatory capacity of F. hepatica antigens is probably one of the main reasons for the development of a driven non-protective Th2 immune response. In this study, we analysed the cellular response of hepatic lymph node cells and CD4+ T cells in terms of proliferative response, efficiency of antigen presentation and cytokine production, to F. hepatica-derived molecules, at early and late stages of the infection. Thirty-one sheep were allocated into five groups and were slaughtered at 16 dpi and 23 wpi. In order to analyse antigen-specific response, the following F. hepatica recombinant molecules were used: rFhCL1, rFhCL2, rFhCL3, rFhCB1, rFhCB2, rFhCB3, rFhStf-1, rFhStf-2, rFhStf-3 and rFhKT1. A cell proliferation assay using hepatic lymph node cells and an antigen presentation cell assay using CD4+ T cells were performed. At 16 dpi, all molecules but rFhStf-2 and rFhKT1 elicited a significant cell proliferative response on hepatic lymph node cells of infected animals. At both early and late stage of the infection, antigen presentation of rFhCB3 and rFhCL2 resulted in higher stimulation index of CD4+ T cells which was IL-2 mediated, although no statistically significant when compared to uninfected animals. Significant cytokine production (IL-4, IL-10 and IFN-γ) was conditioned by the antigen-specific cell stimulation. No CD4+ T cell exhaustion was detected in infected sheep at the chronic stage of the infection. This study addressed antigen-specific response to F. hepatica-derived molecules that are involved in key aspects of the parasite survival within the host.


Asunto(s)
Antígenos Helmínticos/inmunología , Fascioliasis/veterinaria , Ganglios Linfáticos/inmunología , Enfermedades de las Ovejas/inmunología , Linfocitos T/inmunología , Animales , Fasciola hepatica/fisiología , Fascioliasis/inmunología , Fascioliasis/parasitología , Hígado/inmunología , Masculino , Ovinos , Enfermedades de las Ovejas/parasitología , Oveja Doméstica
9.
Epidemiol Infect ; 149: e140, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34099081

RESUMEN

The novel coronavirus, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is the causative agent of the 2020 worldwide coronavirus pandemic. Antibody testing is useful for diagnosing historic infections of a disease in a population. These tests are also a helpful epidemiological tool for predicting how the virus spreads in a community, relating antibody levels to immunity and for assessing herd immunity. In the present study, SARS-CoV-2 viral proteins were recombinantly produced and used to analyse serum from individuals previously exposed, or not, to SARS-CoV-2. The nucleocapsid (Npro) and spike subunit 2 (S2Frag) proteins were identified as highly immunogenic, although responses to the former were generally greater. These two proteins were used to develop two quantitative enzyme-linked immunosorbent assays (ELISAs) that when used in combination resulted in a highly reliable diagnostic test. Npro and S2Frag-ELISAs could detect at least 10% more true positive coronavirus disease-2019 (COVID-19) cases than the commercially available ARCHITECT test (Abbott). Moreover, our quantitative ELISAs also show that specific antibodies to SARS-CoV-2 proteins tend to wane rapidly even in patients who had developed severe disease. As antibody tests complement COVID-19 diagnosis and determine population-level surveillance during this pandemic, the alternative diagnostic we present in this study could play a role in controlling the spread of the virus.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Cinética , Masculino , Persona de Mediana Edad , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Fosfoproteínas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación
10.
Mol Cell Proteomics ; 17(4): 792-809, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29321187

RESUMEN

The parasite Fasciola hepatica infects a broad range of mammals with impunity. Following ingestion of parasites (metacercariae) by the host, newly excysted juveniles (NEJ) emerge from their cysts, rapidly penetrate the duodenal wall and migrate to the liver. Successful infection takes just a few hours and involves negotiating hurdles presented by host macromolecules, tissues and micro-environments, as well as the immune system. Here, transcriptome and proteome analysis of ex vivo F. hepatica metacercariae and NEJ reveal the rapidity and multitude of metabolic and developmental alterations that take place in order for the parasite to establish infection. We found that metacercariae despite being encased in a cyst are metabolically active, and primed for infection. Following excystment, NEJ expend vital energy stores and rapidly adjust their metabolic pathways to cope with their new and increasingly anaerobic environment. Temperature increases induce neoblast proliferation and the remarkable up-regulation of genes associated with growth and development. Cysteine proteases synthesized by gastrodermal cells are secreted to facilitate invasion and tissue degradation, and tegumental transporters, such as aquaporins, are varied to deal with osmotic/salinity changes. Major proteins of the total NEJ secretome include proteases, protease inhibitors and anti-oxidants, and an array of immunomodulators that likely disarm host innate immune effector cells. Thus, the challenges of infection by F. hepatica parasites are met by rapid metabolic and physiological adjustments that expedite tissue invasion and immune evasion; these changes facilitate parasite growth, development and maturation. Our molecular analysis of the critical processes involved in host invasion has identified key targets for future drug and vaccine strategies directed at preventing parasite infection.


Asunto(s)
Fasciola hepatica/fisiología , Proteínas del Helminto/fisiología , Animales , Fascioliasis , Interacciones Huésped-Parásitos , Factores Inmunológicos/fisiología , Proteoma , Transcriptoma , Factores de Virulencia/fisiología
11.
BMC Genomics ; 20(1): 729, 2019 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-31606027

RESUMEN

BACKGROUND: The tropical liver fluke, Fasciola gigantica causes fasciolosis, an important disease of humans and livestock. We characterized dynamic transcriptional changes associated with the development of the parasite in its two hosts, the snail intermediate host and the mammalian definitive host. RESULTS: Differential gene transcription analysis revealed 7445 unigenes transcribed by all F. gigantica lifecycle stages, while the majority (n = 50,977) exhibited stage-specific expression. Miracidia that hatch from eggs are highly transcriptionally active, expressing a myriad of genes involved in pheromone activity and metallopeptidase activity, consistent with snail host finding and invasion. Clonal expansion of rediae within the snail correlates with increased expression of genes associated with transcription, translation and repair. All intra-snail stages (miracidia, rediae and cercariae) require abundant cathepsin L peptidases for migration and feeding and, as indicated by their annotation, express genes putatively involved in the manipulation of snail innate immune responses. Cercariae emerge from the snail, settle on vegetation and become encysted metacercariae that are infectious to mammals; these remain metabolically active, transcribing genes involved in regulation of metabolism, synthesis of nucleotides, pH and endopeptidase activity to assure their longevity and survival on pasture. Dramatic growth and development following infection of the mammalian host are associated with high gene transcription of cell motility pathways, and transport and catabolism pathways. The intra-mammalian stages temporally regulate key families of genes including the cathepsin L and B proteases and their trans-activating peptidases, the legumains, during intense feeding and migration through the intestine, liver and bile ducts. While 70% of the F. gigantica transcripts share homology with genes expressed by the temperate liver fluke Fasciola hepatica, gene expression profiles of the most abundantly expressed transcripts within the comparable lifecycle stages implies significant species-specific gene regulation. CONCLUSIONS: Transcriptional profiling of the F. gigantica lifecycle identified key metabolic, growth and developmental processes the parasite undergoes as it encounters vastly different environments within two very different hosts. Comparative analysis with F. hepatica provides insight into the similarities and differences of these parasites that diverged > 20 million years ago, crucial for the future development of novel control strategies against both species.


Asunto(s)
Fasciola/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Mamíferos/parasitología , Caracoles/parasitología , Animales , Evolución Molecular , Fasciola/genética , Regulación de la Expresión Génica , Especificidad del Huésped , Humanos , Estadios del Ciclo de Vida , Familia de Multigenes , Proteínas Protozoarias/genética
12.
PLoS Comput Biol ; 14(10): e1006525, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30379805

RESUMEN

Malaria is a life-threatening disease spread by mosquitoes. Plasmodium falciparum M1 alanyl aminopeptidase (PfM1-AAP) is a promising target for the treatment of malaria. The recently solved crystal structures of PfM1-AAP revealed that the buried active site can be accessed through two channel openings: a short N-terminal channel with the length of 8 Å and a long C-terminal channel with the length of 30 Å. It is unclear, however, how substrates and inhibitors migrate to the active site and a product of cleavage leaves. Here, we study the molecular mechanism of substrate and inhibitor migration to the active site and the product release using steered molecular dynamics simulations. We identified a stepwise passage of substrates and inhibitors in the C-terminal channel of PfM1-AAP, involving (I) ligand recognition at the opening of the channel, (II) ionic translation to the 'water reservoir', (III) ligand reorientation in the 'water reservoir' and (IV) passage in a suitable conformation into the active site. Endorsed by enzymatic analysis of functional recombinant PfM1-AAP and mutagenesis studies, our novel ligand-residue binding network analysis has identified the functional residues controlling ligand migration within the C-terminal channel of PfM1-AAP. Furthermore, from unbinding simulations of the Arg product we propose a charge repulsion as the driving force to expel the product out from the N-terminal channel of PfM1-AAP. Our work paves the way towards the design of a novel class of PfM1-AAP inhibitors based on preventing substrate entry to the active site.


Asunto(s)
Aminopeptidasas , Simulación de Dinámica Molecular , Plasmodium falciparum/enzimología , Proteínas Protozoarias , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/química , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Dominio Catalítico , Biología Computacional , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
13.
J Proteome Res ; 17(1): 33-45, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28976774

RESUMEN

The release of damage-associated molecular patterns (DAMPs) by airway epithelial cells is believed to play a crucial role in the initiation and development of chronic airway conditions such as asthma and chronic obstructive pulmonary disease (COPD). Intriguingly, the classic DAMP high-mobility group box-1 (HMGB1) is detected in the culture supernatant of airway epithelial cells under basal conditions, indicating a role for HMGB1 in the regulation of epithelial cellular and immune homeostasis. To gain contextual insight into the potential role of HMGB1 in airway epithelial cell homeostasis, we used the orthogonal and complementary methods of high-resolution clear native electrophoresis, immunoprecipitation, and pull-downs coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) to profile HMGB1 and its binding partners in the culture supernatant of unstimulated airway epithelial cells. We found that HMGB1 presents exclusively as a protein complex under basal conditions. Moreover, protein network analysis performed on 185 binding proteins revealed 14 that directly associate with HMGB1: amyloid precursor protein, F-actin-capping protein subunit alpha-1 (CAPZA1), glyceraldehyde-3 phosphate dehydrogenase (GAPDH), ubiquitin, several members of the heat shock protein family (HSPA8, HSP90B1, HSP90AA1), XRCC5 and XRCC6, high mobility group A1 (HMGA1), histone 3 (H3F3B), the FACT (facilitates chromatin transcription) complex constituents SUPT1H and SSRP1, and heterogeneous ribonucleoprotein K (HNRNPK). These studies provide a new understanding of the extracellular functions of HMGB1 in cellular and immune homeostasis at the airway mucosal surface and could have implications for therapeutic targeting.


Asunto(s)
Células Epiteliales/fisiología , Proteína HMGB1/análisis , Homeostasis , Proteómica/métodos , Mucosa Respiratoria/citología , Proteína HMGB1/metabolismo , Proteína HMGB1/fisiología , Humanos , Unión Proteica
14.
FASEB J ; 31(1): 85-95, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27682204

RESUMEN

The NLRP3 inflammasome is a multimeric protein complex that controls the production of IL-1ß, a cytokine that influences the development of both innate and adaptive immune responses. Helminth parasites secrete molecules that interact with innate immune cells, modulating their activity to ultimately determine the phenotype of differentiated T cells, thus creating an immune environment that is conducive to sustaining chronic infection. We show that one of these molecules, FhHDM-1, a cathelicidin-like peptide secreted by the helminth parasite, Fasciola hepatica, inhibits the activation of the NLRP3 inflammasome resulting in reduced secretion of IL-1ß by macrophages. FhHDM-1 had no effect on the synthesis of pro-IL-1ß. Rather, the inhibitory effect was associated with the capacity of the peptide to prevent acidification of the endolysosome. The activation of cathepsin B protease by lysosomal destabilization was prevented in FhHDM-1-treated macrophages. By contrast, peptide derivatives of FhHDM-1 that did not alter the lysosomal pH did not inhibit secretion of IL-1ß. We propose a novel immune modulatory strategy used by F. hepatica, whereby secretion of the FhHDM-1 peptide impairs the activation of NLRP3 by lysosomal cathepsin B protease, which prevents the downstream production of IL-1ß and the development of protective T helper 1 type immune responses that are detrimental to parasite survival.-Alvarado, R., To, J., Lund, M. E., Pinar, A., Mansell, A., Robinson, M. W., O'Brien, B. A., Dalton, J. P., Donnelly, S. The immune modulatory peptide FhHDM-1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages.


Asunto(s)
Fasciola hepatica/metabolismo , Proteínas del Helminto/metabolismo , Macrófagos/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Catepsina B/genética , Catepsina B/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fasciola hepatica/genética , Regulación de la Expresión Génica/fisiología , Proteínas del Helminto/genética , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Dióxido de Silicio/toxicidad
15.
Mol Cell Proteomics ; 15(10): 3139-3153, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27466253

RESUMEN

Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.


Asunto(s)
Fasciola hepatica/fisiología , Glicoproteínas/metabolismo , Análisis por Matrices de Proteínas/métodos , Animales , Glicosilación , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos , Lectinas/metabolismo , Espectrometría de Masas , Proteómica
16.
J Biol Chem ; 291(37): 19220-34, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27422822

RESUMEN

Kunitz-type (KT) protease inhibitors are low molecular weight proteins classically defined as serine protease inhibitors. We identified a novel secreted KT inhibitor associated with the gut and parenchymal tissues of the infective juvenile stage of Fasciola hepatica, a helminth parasite of medical and veterinary importance. Unexpectedly, recombinant KT inhibitor (rFhKT1) exhibited no inhibitory activity toward serine proteases but was a potent inhibitor of the major secreted cathepsin L cysteine proteases of F. hepatica, FhCL1 and FhCL2, and of human cathepsins L and K (Ki = 0.4-27 nm). FhKT1 prevented the auto-catalytic activation of FhCL1 and FhCL2 and formed stable complexes with the mature enzymes. Pulldown experiments from adult parasite culture medium showed that rFhKT1 interacts specifically with native secreted FhCL1, FhCL2, and FhCL5. Substitution of the unusual P1 Leu(15) within the exposed reactive loop of FhKT1 for the more commonly found Arg (FhKT1Leu(15)/Arg(15)) had modest adverse effects on the cysteine protease inhibition but conferred potent activity against the serine protease trypsin (Ki = 1.5 nm). Computational docking and sequence analysis provided hypotheses for the exclusive binding of FhKT1 to cysteine proteases, the importance of the Leu(15) in anchoring the inhibitor into the S2 active site pocket, and the inhibitor's selectivity toward FhCL1, FhCL2, and human cathepsins L and K. FhKT1 represents a novel evolutionary adaptation of KT protease inhibitors by F. hepatica, with its prime purpose likely in the regulation of the major parasite-secreted proteases and/or cathepsin L-like proteases of its host.


Asunto(s)
Catepsina K/antagonistas & inhibidores , Catepsina L/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Fasciola hepatica/química , Proteínas del Helminto/química , Animales , Catepsina K/química , Catepsina L/química , Humanos , Proteínas Recombinantes/química , Tripsina/química , Inhibidores de Tripsina/química
17.
Mol Cell Proteomics ; 14(12): 3258-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26486420

RESUMEN

Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular "machinery" required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack.


Asunto(s)
Vesículas Extracelulares/metabolismo , Fasciola hepatica/patogenicidad , Proteínas del Helminto/metabolismo , Animales , Vesículas Extracelulares/genética , Fasciola hepatica/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/genética , Proteómica/métodos
18.
BMC Infect Dis ; 16: 112, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26945988

RESUMEN

BACKGROUND: Schistosomiasis is the most important human helminth infection due to its impact on public health. The clinical manifestations are chronic and significantly decrease an individual's quality of life. Infected individuals suffer from long-term organ pathologies including fibrosis which eventually leads to organ failure. The development of a vaccine against this parasitic disease would contribute to a long-lasting decrease in disease spectrum and transmission. METHOD: Our group has chosen Schistosoma mansoni (Sm) cathepsin B, a peptidase involved in parasite feeding, as a prospective vaccine candidate. Our experimental formulation consisted of recombinant Sm-cathepsin B formulated in Montanide ISA 720 VG, a squalene based adjuvant containing a mannide mono-oleate emulsifier. Parasitological burden was assessed by determining adult worm, hepatic egg, and intestinal egg numbers in each mouse. Serum was used in ELISAs to evaluate production of antigen-specific antibodies, and isolated splenocytes were stimulated with the antigen for the analysis of cytokine secretion levels. RESULTS: The Sm-cathepsin B and Montanide formulation conferred protection against a challenge infection by significantly reducing all forms of parasitological burdens. Worm burden, hepatic egg burden and intestinal egg burden were decreased by 60%, 6%, and 56%, respectively in immunized animals compared to controls (P = 0.0002, P < 0.0001, P = 0.0009, respectively). Immunizations with the vaccine elicited robust production of Sm-cathepsin B specific antibodies (endpoint titers = 122,880). Both antigen-specific IgG1 and IgG2c titers were observed, with the former having more elevated titers. Furthermore, splenocytes isolated from the immunized animals, compared to control animals, secreted higher levels of key Th1 cytokines, IFN-γ, IL-12, and TNF-α, as well as the Th2 cytokines IL-5 and IL-4 when stimulated with recombinant Sm-cathepsin B. The Th17 cytokine IL-17, the chemokine CCL5, and the growth factor GM-CSF were also significantly increased in the immunized animals compared to the controls. CONCLUSION: The formulation tested in this study was able to significantly reduce all forms of parasite burden, stimulate robust production of antigen-specific antibodies, and induce a mixed Th1/Th2 response. These results highlight the potential of Sm-cathepsin B/Montanide ISA 720 VG as a vaccine candidate against schistosomiasis.


Asunto(s)
Catepsina B , Proteínas del Helminto , Schistosoma mansoni , Esquistosomiasis mansoni , Vacunas , Animales , Catepsina B/química , Catepsina B/inmunología , Proteínas del Helminto/química , Proteínas del Helminto/inmunología , Ratones , Schistosoma mansoni/química , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/prevención & control
19.
Exp Parasitol ; 169: 13-21, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27373432

RESUMEN

Infection with the apicomplexan parasite Plasmodium falciparum is a major cause of morbidity and mortality worldwide. One of the striking features of this parasite is its ability to remodel and decrease the deformability of host red blood cells, a process that contributes to disease. To further understand the virulence of Pf we investigated the biochemistry and function of a putative Pf S33 proline aminopeptidase (PfPAP). Unlike other P. falciparum aminopeptidases, PfPAP contains a predicted protein export element that is non-syntenic with other human infecting Plasmodium species. Characterization of PfPAP demonstrated that it is exported into the host red blood cell and that it is a prolyl aminopeptidase with a preference for N-terminal proline substrates. In addition genetic deletion of this exopeptidase was shown to lead to an increase in the deformability of parasite-infected red cells and in reduced adherence to the endothelial cell receptor CD36 under flow conditions. Our studies suggest that PfPAP plays a role in the rigidification and adhesion of infected red blood cells to endothelial surface receptors, a role that may make this protein a novel target for anti-disease interventions strategies.


Asunto(s)
Aminopeptidasas/metabolismo , Deformación Eritrocítica/fisiología , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Aminopeptidasas/química , Aminopeptidasas/genética , Aminopeptidasas/inmunología , Anticuerpos Antiprotozoarios/inmunología , Northern Blotting , Western Blotting , Adhesión Celular/fisiología , Elasticidad , Membrana Eritrocítica/genética , Membrana Eritrocítica/fisiología , Eritrocitos/parasitología , Técnicas de Inactivación de Genes , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Plasmodium falciparum/genética , ARN Protozoario/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transfección
20.
Trends Biochem Sci ; 35(1): 53-61, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19796954

RESUMEN

The neutral aminopeptidases M1 alanyl aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) of the human malaria parasite Plasmodium falciparum are targets for the development of novel anti-malarial drugs. Although the functions of these enzymes remain unknown, they are believed to act in the terminal stages of haemoglobin degradation, generating amino acids essential for parasite growth and development. Inhibitors of both enzymes are lethal to P. falciparum in culture and kill the murine malaria P. chabaudi in vivo. Recent biochemical, structural and functional studies provide the substrate specificity and mechanistic binding data needed to guide the development of more potent anti-malarial drugs. Together with biological studies, these data form the rationale for choosing PfM1AAP and PfM17LAP as targets for anti-malarial development.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Humanos , Malaria Falciparum/fisiopatología , Plasmodium falciparum/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA