Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Anal Biochem ; 532: 26-28, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552758

RESUMEN

In order to evaluate the isoform selectivity of novel inhibitors within the c-Jun N-terminal kinase (JNK) family, a fluorescence polarization-based competition binding assay, previously developed for JNK3, was extended to the other isoforms JNK1 and JNK2. The assay is based on the displacement of a versatile fluorescent pyridinylimidazole-based probe and was validated by testing the precursor of the probe as well as standard JNK inhibitors.


Asunto(s)
Polarización de Fluorescencia , Colorantes Fluorescentes/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Unión Competitiva , Humanos , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 9 Activada por Mitógenos/antagonistas & inhibidores , Unión Proteica
2.
J Chem Theory Comput ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291905

RESUMEN

Halogen bonding is a valuable interaction in drug design, offering an unconventional way to influence affinity and selectivity by leveraging the halogen atoms' ability to form directional bonds. The present study evaluates halogen-water interactions within protein binding sites, demonstrating that targeting a water molecule via halogen bonding can in specific cases contribute beneficially to ligand binding. In solving and examining the crystal structure of 2-cyclopentyl-7-iodo-1H-indole-3-carbonitrile bound to DYRK1a kinase, we identified a notable iodine-water interaction, where water accepts a halogen bond with good geometric and energetic features. This starting point triggered further investigations into the prevalence of such interactions across various halogen-bearing ligands (chlorine, bromine, iodine) in the PDB. Using QM calculations (MP2/TZVPP), we highlight the versatility and potential benefits of such halogen-water interactions, particularly when the water molecule is a stable part of the binding site's structured environment. While the interaction energies with water are lower compared to other typical halogen bond acceptors, we deem this different binding strength essential for reducing desolvation costs. We suggest that "interstitial" water molecules, as stable parts of the binding site engaging in multiple strong interactions, could be prime targets for halogen bonding. Further systematic studies, combining high-resolution crystal structures and quantum chemistry, are required to scrutinize whether halogen bonding on water is more than a "drop in the ocean".

3.
Eur J Med Chem ; 257: 115534, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37269671

RESUMEN

Derivatives with tetrahydrobenzo[h]quinoline chemotype were synthesized via one-pot reactions and evaluated for their antileishmanial, antimalarial and antitubercular activities. Based on a structure-guided approach, they were designed to possess antileishmanial activity through antifolate mechanism, via targeting Leishmania major pteridine reductase 1 (Lm-PTR1). The in vitro antipromastigote and antiamastigote activity are promising for all candidates and superior to the reference miltefosine, in a low or sub micromolar range of activity. Their antifolate mechanism was confirmed via the ability of folic and folinic acids to reverse the antileishmanial activity of these compounds, comparably to Lm-PTR1 inhibitor trimethoprim. Molecular dynamics simulations confirmed a stable and high potential binding of the most active candidates against leishmanial PTR1. For the antimalarial activity, most of the compounds exhibited promising antiplasmodial effect against P. berghei with suppression percentage of up to 97.78%. The most active compounds were further screened in vitro against the chloroquine resistant strain P. falciparum, (RKL9) and showed IC50 value range of 0.0198-0.096 µM, compared to IC50 value of 0.19420 µM for chloroquine sulphate. Molecular docking of the most active compounds against the wild-type and quadruple mutant pf DHFR-TS structures rationalized the in vitro antimalarial activity. Some candidates showed good antitubercular activity against sensitive Mycobacterium tuberculosis in a low micromolar range of MIC, compared to 0.875 µM of isoniazid. The top active ones were further tested against a multidrug-resistant strain (MDR) and extensively drug-resistant strain (XDR) of Mycobacterium tuberculosis. Interestingly, the in vitro cytotoxicity test of the best candidates displayed high selectivity indices emphasizing their safety on mammalian cells. Generally, this work introduces a fruitful matrix for new dual acting antileishmanial-antimalarial chemotype graced with antitubercular activity. This would help in tackling drug-resistance issues in treating some Neglected Tropical Diseases.


Asunto(s)
Antimaláricos , Antiprotozoarios , Antituberculosos , Antagonistas del Ácido Fólico , Hidroxiquinolinas , Quinolinas , Animales , Antimaláricos/farmacología , Antiprotozoarios/farmacología , Antituberculosos/farmacología , Cloroquina/farmacología , Antagonistas del Ácido Fólico/farmacología , Hidroxiquinolinas/farmacología , Leishmania major/efectos de los fármacos , Mamíferos , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Quinolinas/química
4.
J Med Chem ; 65(21): 14539-14552, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36288453

RESUMEN

We conceived the Halogen-Enriched Fragment Library (HEFLib) to investigate the potential of halogen bonds in the early stages of drug discovery. As the number of competitive interactions increases with ligand size, we reasoned that a binding mode relying on halogen bonding is more likely for fragments than highly decorated molecules. Thus, fragments could feature unexplored binding modes. We screened the HEFLib against the human kinase DYRK1a and verified micromolar binding fragments via isothermal titration calorimetry (ITC). The crystal structure of one fragment revealed a noncanonical binding mode, despite the fragment's classical hinge binding motif. In addition, the fragment occupies a secondary binding site. Both binding modes feature a halogen bond, which we evaluated by ab initio calculations. Structure-affinity relationship (SAR) from a set of analogues improves the affinity, provides a promising fragment-growth vector, and highlights the benefits and applicability of halogen bonds in early lead development.


Asunto(s)
Descubrimiento de Drogas , Halógenos , Humanos , Halógenos/química , Ligandos , Sitios de Unión , Calorimetría
5.
RSC Med Chem ; 13(12): 1575-1586, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36561072

RESUMEN

The cellular tumor antigen p53 is a key component in cell cycle control. The mutation Y220C heavily destabilizes the protein thermally but yields a druggable crevice. We have screened the diversity-optimized halogen-enriched fragment library against T-p53C-Y220C with STD-NMR and DSF to identify hits, which we validated by 1H,15N-HSQC NMR. We could identify four hits binding in the Y220C cleft, one hit binding covalently and four hits binding to an uncharacterized binding site. Compound 1151 could be crystallized showing a flip of C220 and thus opening subsite 3. Additionally, 4482 was identified to alkylate cysteines. Data shows that the diversity-optimized HEFLib leads to multiple diverse hits. The identified scaffolds can be used to further optimize interactions with T-p53C-Y220C and increase thermal stability.

6.
Front Chem ; 9: 815567, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35186897

RESUMEN

Fragment-based drug discovery is one of the most utilized approaches for the identification of novel weakly binding ligands, by efficiently covering a wide chemical space with rather few compounds and by allowing more diverse binding modes to be found. This approach has led to various clinical candidates and approved drugs. Halogen bonding, on the other hand, has gained traction in molecular design and lead optimization, but could offer additional benefits in early drug discovery. Screening halogen-enriched fragments (HEFLibs) could alleviate problems associated with the late introduction of such a highly geometry dependent interaction. Usually, the binding mode is then already dominated by other strong interactions. Due to the fewer competing interactions in fragments, the halogen bond should more often act as an anchor point for the binding mode. Previously, we proposed a fragment library with a focus on diverse binding modes that involve halogens for gaining initial affinity and selectivity. Herein, we demonstrate the applicability of these HEFLibs with a small set of diverse enzymes: the histone-lysine N-methyltransferase DOT1L, the indoleamine 2,3-dioxygenase 1 (IDO1), the AP2-associated protein kinase 1 (AAK1), and the calcium/calmodulin-dependent protein kinase type 1G (CAMK1G). We were able to identify various binding fragments via STD-NMR. Using ITC to verify these initial hits, we determined affinities for many of these fragments. The best binding fragments exhibit affinities in the one-digit micromolar range and ligand efficiencies up to 0.83 for AAK1. A small set of analogs was used to study structure-affinity relationships and hereby analyze the specific importance of each polar interaction. This data clearly suggests that the halogen bond is the most important interaction of fragment 9595 with AAK1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA