Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Semin Cell Dev Biol ; 134: 37-58, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35292191

RESUMEN

The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.


Asunto(s)
Evolución Biológica , Embryophyta , Plantas , Filogenia
2.
Proc Biol Sci ; 291(2027): 20240985, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39081174

RESUMEN

Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty. Here, we asked the question of how these bursts were possible. For this, we explored: (i) the initial emergence and (ii) the reshuffling of domains to give rise to hallmark environmental response genes of land plants. We pinpoint that a quarter of the embryophytic genes for stress physiology are specific to the lineage, yet a significant portion of this novelty arises not de novo but from reshuffling and recombining of pre-existing domains. Our data suggest that novel combinations of old genomic substrate shaped the plant terrestrialization toolkit, including hallmark processes in signalling, biotic interactions and specialized metabolism.


Asunto(s)
Evolución Biológica , Embryophyta , Dominios Proteicos , Embryophyta/genética
3.
Ann Bot ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832756

RESUMEN

The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). While Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of likely more than 5000 species of streptophyte algae that form a paraphyletic grade next to land plants. Here, we focus on the deep divergences that gave rise to the diversity of streptophytes-and thus, particularly on the streptophyte algae. Phylogenomic efforts have not only clarified the position of streptophyte algae to land plants but recent efforts have also begun to unravel the relationships and major radiations within streptophyte algal diversity. We illustrate how new phylogenomic perspectives have changed our view on the evolutionary emergence of key traits such as intricate signaling networks that are intertwined with multicellular growth and the chemodiverse hotbed from which they emerged. These traits are key for the biology of land plants-but were bequeathed from their algal progenitors.

4.
Physiol Plant ; 175(6): e14056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148198

RESUMEN

Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of the conquest of land. Here, we worked with two representatives of the Zygnematophyceae, Zygnema circumcarinatum SAG 698-1b and Mesotaenium endlicherianum SAG 12.97, who differ in habitats and drought resilience. We challenged both algal species with severe desiccation in a laboratory setup until photosynthesis ceased, followed by a recovery period. We assessed their morphological, photophysiological, and transcriptomic responses. Our data pinpoint global differential gene expression patterns that speak of conserved responses, from calcium-mediated signaling to the adjustment of plastid biology, cell envelopes, and amino acid pathways, between Zygnematophyceae and land plants despite their strong ecophysiological divergence. The main difference between the two species appears to rest in a readjustment of the photobiology of Zygnema, while Mesotaenium experiences stress beyond a tipping point.


Asunto(s)
Embryophyta , Streptophyta , Desecación , Streptophyta/genética , Streptophyta/metabolismo , Plantas , Fotosíntesis
5.
Proc Biol Sci ; 288(1963): 20212168, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34814752

RESUMEN

Streptophytes are one of the major groups of the green lineage (Chloroplastida or Viridiplantae). During one billion years of evolution, streptophytes have radiated into an astounding diversity of uni- and multicellular green algae as well as land plants. Most divergent from land plants is a clade formed by Mesostigmatophyceae, Spirotaenia spp. and Chlorokybophyceae. All three lineages are species-poor and the Chlorokybophyceae consist of a single described species, Chlorokybus atmophyticus. In this study, we used phylogenomic analyses to shed light into the diversity within Chlorokybus using a sampling of isolates across its known distribution. We uncovered a consistent deep genetic structure within the Chlorokybus isolates, which prompted us to formally extend the Chlorokybophyceae by describing four new species. Gene expression differences among Chlorokybus species suggest certain constitutive variability that might influence their response to environmental factors. Failure to account for this diversity can hamper comparative genomic studies aiming to understand the evolution of stress response across streptophytes. Our data highlight that future studies on the evolution of plant form and function can tap into an unknown diversity at key deep branches of the streptophytes.


Asunto(s)
Chlorophyta , Embryophyta , Chlorophyta/genética , Embryophyta/genética , Evolución Molecular , Genoma , Filogenia , Plantas/genética
6.
Symbiosis ; 82(3): 175-188, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328698

RESUMEN

Associations of freshwater sponges with coccoid green algae have been known for a long time. Two types of coccoid green algae, which are commonly assigned as zoochlorellae, are recognized by morphology: small coccoids (< 3 µm) without pyrenoids and larger Chlorella-like algae (4-6 µm) with pyrenoids. Despite their wide distribution in some freshwater sponges, these green algae were never studied using a combined analysis of morphology and molecular phylogeny. We investigated several endosymbiotic strains isolated from different Spongilla species, which were available in culture collections. Phylogenetic analyses of SSU and ITS rDNA sequences revealed that the strain SAG 211-40a is a member of the Chlorellaceae and represents a new species of the newly erected genus Lewiniosphaera, L symbiontica. The phylogenetic position was confirmed by morphology and ITS-2 barcode. The endosymbionts without pyrenoid were identified as Choricystis parasitica by morphology and phylogenetic analyses. The comparison with free-living strains revealed the recognition of two new Choricystis species, C. krienitzii and C. limnetica, which were confirmed by molecular signatures in V9 region of SSU rDNA and ITS-2 barcode.

8.
Extremophiles ; 23(5): 573-586, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31227902

RESUMEN

Biological soil crusts of extreme habitats (semi-deserts and deserts) are dominated by cyanobacteria and microalgae. The most abundant taxa are green algae belonging to the classes Chlorophyceae and Trebouxiophyceae. Specimens with sarcinoid-like morphology (cells arranged in packages) represent one group of these microalgae. The genus Pleurastrosarcina consists of two species, which were originally described as Chlorosarcina (P. brevispinosa and P. longispinosa). Both species are exclusively found from arid soils. However, these species were only reported few times and probably overlooked especially if no akinetes were present. During studying soil samples collected from different regions of the Atacama desert (Chile), we isolated two strains, which were morphologically similar to both Pleurastrosarcina species. The phylogenetic analyses confirmed that they belong to this genus. The ITS-2/CBC approach revealed that both new isolates represent a new species, P. terriformae. The comparison with other available strains demonstrated that this new species is not restricted to South America and was also found in coastal area in Europe. The six investigated strains showed a high phenotypic plasticity, which is reflected in the descriptions of several varieties.


Asunto(s)
Chlorophyta/genética , Clima Desértico , Chlorophyta/clasificación , Código de Barras del ADN Taxonómico , Repeticiones de Microsatélite , Filogenia , Suelo
9.
J Phycol ; 55(2): 493-499, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30582760

RESUMEN

Chlorella-like coccoid green algae are widely distributed in almost all terrestrial habitats and belong to different lineages of the Chlorophyceae and Trebouxiophyceae. The Watanabea clade of the Trebouxiophyceae shows a high genetic biodiversity. Re-investigation of the authentic strain of the rarely found W. reniformis showed several morphological differences compared to the original description. To clarify the taxonomic status of Watanabea, we compared several new isolates with similar morphology. Phylogenetic analyses of the SSU and SSU+ITS rDNA sequences revealed that all new isolates were distinct from W. reniformis. The ITS-2/CBC approach clearly demonstrated that the strains belonging to Watanabea represented species. We emended the generic diagnosis of Watanabea, and proposed four new species. One strain, SAG 2552, represented a separate lineage that we propose as a new genus Massjukichlorella with one species M. epiphytica.


Asunto(s)
Chlorella , Biodiversidad , Chlorophyceae , ADN Ribosómico , Filogenia
10.
J Phycol ; 52(6): 1125-1145, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27734501

RESUMEN

The genera Elliptochloris and Pseudochlorella were erected for Chlorella-like green algae producing two types of autospores and cell packages, respectively. Both genera are widely distributed in different soil habitats, either as free living or as photobionts of lichens. The species of these genera are often difficult to identify because of the high phenotypic plasticity and occasional lack of characteristic features. The taxonomic and nomenclatural status of these species, therefore, remains unclear. In this study, 34 strains were investigated using an integrative approach. Phylogenetic analyses demonstrated that the isolates belong to two independent lineages of the Trebouxiophyceae (Elliptochloris and Prasiola clades) and confirmed that the genera are not closely related. The comparison of morphology, molecular phylogeny, and analyses of secondary structures of SSU and ITS rDNA sequences revealed that all of the strains belong to three genera: Elliptochloris, Pseudochlorella, and Edaphochlorella. As a consequence of the taxonomic revisions, we propose two new combinations (Elliptochloris antarctica and Pseudochlorella signiensis) and validate Elliptochloris reniformis, which is invalidly described according to the International Code for Nomenclature (ICN), by designating a holotype. To reflect the high phenotypic plasticity of P. signiensis, two new varieties were described: P. signiensis var. magna and P. signiensis var. communis. Chlorella mirabilis was not closely related to any of these genera and was, therefore, transferred to the new genus Edaphochlorella. All of the taxonomic changes were highly supported by all phylogenetic analyses and were confirmed by the ITS-2 Barcodes using the ITS-2/CBC approach.


Asunto(s)
Chlorophyta/clasificación , Chlorophyta/genética , Código de Barras del ADN Taxonómico , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Algas/química , ADN de Algas/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Filogenia , Alineación de Secuencia , Especificidad de la Especie
11.
J Phycol ; 51(2): 394-400, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26986533

RESUMEN

The monotypic genus Auxenochlorella with its type species A. protothecoides is so far only known from specific habitats such as the sap of several tree species. Several varieties were described according to physiological performances in culture on different organic substrates. However, two strains designated as Auxenochlorella were isolated from other habitats (an endosymbiont of Hydra viridis and an aquatic strain from an acidic volcano stream). We studied those isolates and compared them with six strains of Auxenochlorella belonging to different varieties. The integrative approach used in this study revealed that all strains showed similar morphology but differed in their SSU and ITS rDNA sequences. The Hydra endosymbiont formed a sister taxon to A. protothecoides, which included the varieties protothecoides, galactophila, and communis. The variety acidicola is not closely related to Auxenochlorella and represented its own lineage within the Trebouxiophyceae. In view of these results, we propose a new species of Auxenochlorella, A. symbiontica, for the Hydra symbiont, and a new genus Pumiliosphaera, with its type species, P. acidophila, for acidophilic strain. These results are supported by several compensatory base changes in the conserved region of ITS-2 and ITS-2 DNA barcodes.

12.
Microorganisms ; 12(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38792698

RESUMEN

Coccoid Ulvophyceae are often overlooked despite their wide distribution. They occur as epiphytes on marine seaweeds or grow on stones or on shells of mussels and corals. Most of the species are not easy to identify based solely on morphology. However, they form two groups based on the flagellated cells during asexual reproduction. The biflagellated coccoids are monophyletic and represent the genus Sykidion (Sykidiales). In contrast, the quadriflagellated taxa are polyphyletic and belong to different genera and orders. The newly investigated strains NIES-1838 and NIES-1839, originally identified as Halochlorococcum, belong to the genus Chlorocystis (C. john-westii) among the order Chlorocystidales. The unidentified strain CCMP 1293 had almost an identical SSU and ITS-2 sequence to Symbiochlorum hainanense (Ignatiales) but showed morphological differences (single chloroplast, quadriflagellated zoospores) compared with the original description of this species (multiple chloroplasts, aplanospores). Surprisingly, the strain SAG 2662 (= ULVO-129), together with the published sequence of MBIC 10461, formed a new monophyletic lineage among the Ulvophyceae, which is highly supported in all of the bootstrap and Bayesian analyses and approximately unbiased tests of user-defined trees. This strain is characterized by a spherical morphology and also form quadriflagellated zoospores, have a unique ITS-2 barcode, and can tolerate a high variation of salinities. Considering our results, we emend the diagnosis of Symbiochlorum and propose the new genus Solotvynia among the new order Solotvyniales.

13.
Curr Biol ; 34(3): 670-681.e7, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38244543

RESUMEN

Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.


Asunto(s)
Embryophyta , Streptophyta , Filogenia , Evolución Biológica , Plantas/genética , Embryophyta/genética
14.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693345

RESUMEN

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Asunto(s)
Embryophyta , Evolución Molecular , Filogenia , Transducción de Señal , Transducción de Señal/genética , Embryophyta/genética , Redes Reguladoras de Genes , Genoma/genética , Genoma de Planta
15.
Nat Plants ; 9(9): 1419-1438, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640935

RESUMEN

Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here we used fine-combed RNA sequencing in tandem with a photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study the combinatory effects of stress response using clustering along gradients. Mesotaenium shares with land plants major hubs in genetic networks underpinning stress response and acclimation. Our data suggest that lipid droplet formation and plastid and cell wall-derived signals have denominated molecular programmes since more than 600 million years of streptophyte evolution-before plants made their first steps on land.


Asunto(s)
Aclimatación , Pared Celular , Biomasa , Redes Reguladoras de Genes
16.
bioRxiv ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36778228

RESUMEN

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

17.
Sci Rep ; 12(1): 18089, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302793

RESUMEN

Paramecium bursaria is a mixotrophic ciliate species, which is common in stagnant and slow-flowing, nutrient-rich waters. It is usually found living in symbiosis with zoochlorellae (green algae) of the genera Chlorella or Micractinium. We investigated P. bursaria isolates from around the world, some of which have already been extensively studied in various laboratories, but whose morphological and genetic identity has not yet been completely clarified. Phylogenetic analyses of the SSU and ITS rDNA sequences revealed five highly supported lineages, which corresponded to the syngen and most likely to the biological species assignment. These syngens R1-R5 could also be distinguished by unique synapomorphies in the secondary structures of the SSU and the ITS. Considering these synapomorphies, we could clearly assign the existing GenBank entries of P. bursaria to specific syngens. In addition, we discovered synapomorphies at amino acids of the COI gene for the identification of the syngens. Using the metadata of these entries, most syngens showed a worldwide distribution, however, the syngens R1 and R5 were only found in Europe. From morphology, the syngens did not show any significant deviations. The investigated strains had either Chlorella variabilis, Chlorella vulgaris or Micractinium conductrix as endosymbionts.


Asunto(s)
Alveolados , Chlorella vulgaris , Chlorophyta , Cilióforos , Oligohimenóforos , Paramecium , Paramecium/genética , Filogenia , Chlorophyta/genética , Simbiosis/genética
18.
Curr Biol ; 32(20): 4473-4482.e7, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36055238

RESUMEN

The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).1 There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.2-6 Despite the species richness (>4,000), wide distribution, and key evolutionary position of the zygnematophytes, their internal phylogeny remains largely unresolved.7,8 There are also putative zygnematophytes with interesting body plan modifications (e.g., filamentous growth) whose phylogenetic affiliations remain unknown. Here, we studied a filamentous green alga (strain MZCH580) from an Austrian peat bog with central or parietal chloroplasts that lack discernible pyrenoids. It represents Mougeotiopsis calospora PALLA, an enigmatic alga that was described more than 120 years ago9 but never subjected to molecular analyses. We generated transcriptomic data of M. calospora strain MZCH580 and conducted comprehensive phylogenomic analyses (326 nuclear loci) for 46 taxonomically diverse zygnematophytes. Strain MZCH580 falls in a deep-branching zygnematophycean clade together with some unicellular species and thus represents a formerly unknown zygnematophycean lineage with filamentous growth. Our well-supported phylogenomic tree lets us propose a new five-order system for the Zygnematophyceae and provides evidence for at least five independent origins of true filamentous growth in the closest algal relatives of land plants. This phylogeny provides a robust and comprehensive framework for performing comparative analyses and inferring the evolution of cellular traits and body plans in the closest relatives of land plants.


Asunto(s)
Carofíceas , Embryophyta , Streptophyta , Filogenia , Evolución Biológica , Embryophyta/genética , Carofíceas/genética , Plantas , Suelo
19.
Environ Microbiol ; 13(2): 350-64, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20874732

RESUMEN

Symbiosis of green algae with protozoa and invertebrates has been studied for more than 100 years. Endosymbiotic green algae are widely distributed in ciliates (e.g. Paramecium, Stentor, Climacostomum, Coleps, Euplotes), heliozoa (e.g. Acanthocystis) and invertebrates (e.g. Hydra, Spongilla), and have traditionally been identified as named or unnamed species of Chlorella Beij. or Zoochlorella K. Brandt or referred to as Chlorella-like algae or zoochlorellae. We studied 17 strains of endosymbionts isolated from various hosts and geographical localities using an integrative approach (nuclear encoded small subunit and internal transcribed spacer regions of rRNA gene sequences including their secondary structures, morphology, physiology and virus sensitivity). Phylogenetic analyses have revealed them to be polyphyletic. The strains examined belong to five independent clades within the Trebouxiophyceae (Choricystis-, Elliptochloris-, Auxenochlorella- and Chlorella-clades) and Chlorophyceae (Scenedesmus-clade). The most studied host organism, Paramecium bursaria, harbours endosymbionts representing at least five different species. On the basis of our results, we propose a taxonomic revision of endosymbiotic 'Chlorella'-like green algae. Zoochlorella conductrix K. Brandt is transferred to Micractinium Fresen. and Zoochlorella parasitica K. Brandt to Choricystis (Skuja) Fott. It was shown that Choricystis minor (Skuja) Fott, the generitype, is a later heterotypic synonym of Choricystis parasitica (K. Brandt) comb. nov. A new species, Chlorella heliozoae, is proposed to accommodate the endosymbiont of Acanthocystis turfacea.


Asunto(s)
Chlorella/clasificación , Chlorella/genética , Filogenia , Secuencia de Bases , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Genes de ARNr , Conformación de Ácido Nucleico , Paramecium/microbiología , Simbiosis
20.
Microorganisms ; 9(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34442668

RESUMEN

Most marine coccoid and sarcinoid green algal species have traditionally been placed within genera dominated by species from freshwater or soil habitats. For example, the genera Chlorocystis and Halochlorococcum contain exclusively marine species; however, their familial and ordinal affinities are unclear. They are characterized by a vegetative cell with lobated or reticulated chloroplast, formation of quadriflagellated zoospores and living epi- or endophytically within benthic macroalgae. They were integrated into the family Chlorochytriaceae which embraces all coccoid green algae with epi- or endophytic life phases. Later, they were excluded from the family of Chlorococcales based on studies of their life histories in culture, and transferred to their newly described order, Chlorocystidales of the Ulvophyceae. Both genera form a "Codiolum"-stage that serves as the unicellular sporophyte in their life cycles. Phylogenetic analyses of SSU and ITS rDNA sequences confirmed that these coccoid taxa belong to the Chlorocystidales, together with the sarcinoid genus Desmochloris. The biflagellated coccoid strains were members of the genus Sykidion, which represented its own order, Sykidiales, among the Ulvophyceae. Considering these results and the usage of the ITS-2/CBC approach revealed three species of Desmochloris, six of Chlorocystis, and three of Sykidion. Three new species and several new combinations were proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA