Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Orthop Trauma Surg ; 142(11): 3193-3200, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34347124

RESUMEN

INTRODUCTION: As the COVID-19 pandemic was spreading in 2020, the government imposed national lockdowns. We considered the effects these lockdowns had on the paediatric population, with a specific focus on lower limb orthopaedic trauma. We hypothesise that these restrictions will have altered the mechanisms of injury and reduced the number of referrals. MATERIALS AND METHODS: We retrospectively analysed data from 28/08/19 to 01/04/21, considering the variations in referrals and operations during these times, and analysed these data using an online statistical calculator. We examined the rate of referrals, types of fractures referred to the centre, mechanism of injury, volume of operations performed, and average wait times to undergo an operation. The data were compared in pre-lockdown and lockdown times. RESULTS: 67 paediatric patients with lower limb fractures were included in this study. Throughout the lockdown periods, the mean age of children referred was younger (6.9 from 11.1) and they were less likely to be injured as a result of sport (p = 0.0493). They were more likely to fracture their lower leg (p = 0.0016) when compared with other anatomical regions. The average weekly rate of referrals dropped (0.84-0.68), but the rate of operations almost quartered (0.39-0.16). The average wait times for operations dropped significantly, with patients waiting 80% less time from the date of their injury. CONCLUSION: This study highlights the impact of the coronavirus pandemic on the prevalence and management of lower limb paediatric trauma. The demographics and mechanisms of injury which presented to the trust over the pandemic and associated national lockdowns were significantly different. There was a drop in the number of referrals and a preference to non-operative management when patients did present.


Asunto(s)
COVID-19 , Fracturas Óseas , Ortopedia , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Control de Enfermedades Transmisibles , Humanos , Extremidad Inferior/cirugía , Pandemias/prevención & control , Estudios Retrospectivos
2.
Mol Ecol ; 30(17): 4321-4337, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34162013

RESUMEN

By shuffling biogeographical distributions, biological invasions can both disrupt long-standing associations between hosts and parasites and establish new ones. This creates natural experiments with which to study the ecology and evolution of host-parasite interactions. In estuaries of the Gulf of Mexico, the white-fingered mud crab (Rhithropanopeus harrisii) is infected by a native parasitic barnacle, Loxothylacus panopaei (Rhizocephala), which manipulates host physiology and behaviour. In the 1960s, L. panopaei was introduced to the Chesapeake Bay and has since expanded along the southeastern Atlantic coast, while host populations in the northeast have so far been spared. We use this system to test the host's transcriptomic response to parasitic infection and investigate how this response varies with the parasite's invasion history, comparing populations representing (i) long-term sympatry between host and parasite, (ii) new associations where the parasite has invaded during the last 60 years and (iii) naïve hosts without prior exposure. A comparison of parasitized and control crabs revealed a core response, with widespread downregulation of transcripts involved in immunity and moulting. The transcriptional response differed between hosts from the parasite's native range and where it is absent, consistent with previous observations of increased susceptibility in populations lacking exposure to the parasite. Crabs from the parasite's introduced range, where prevalence is highest, displayed the most dissimilar response, possibly reflecting immune priming. These results provide molecular evidence for parasitic manipulation of host phenotype and the role of gene regulation in mediating host-parasite interactions.


Asunto(s)
Braquiuros , Parásitos , Thoracica , Animales , Braquiuros/genética , Interacciones Huésped-Parásitos/genética , Transcriptoma
3.
Ecol Indic ; 128: 1-107822, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35558093

RESUMEN

Cyanobacterial blooms can have negative effects on human health and local ecosystems. Field monitoring of cyanobacterial blooms can be costly, but satellite remote sensing has shown utility for more efficient spatial and temporal monitoring across the United States. Here, satellite imagery was used to assess the annual frequency of surface cyanobacterial blooms, defined for each satellite pixel as the percentage of images for that pixel throughout the year exhibiting detectable cyanobacteria. Cyanobacterial frequency was assessed across 2,196 large lakes in 46 states across the continental United States (CONUS) using imagery from the European Space Agency's Ocean and Land Colour Instrument for the years 2017 through 2019. In 2019, across all satellite pixels considered, annual bloom frequency had a median value of 4% and a maximum value of 100%, the latter indicating that for those satellite pixels, a cyanobacterial bloom was detected by the satellite sensor for every satellite image considered. In addition to annual pixel-scale cyanobacterial frequency, results were summarized at the lake- and state-scales by averaging annual pixel-scale results across each lake and state. For 2019, average annual lake-scale frequencies also had a maximum value of 100%, and Oregon and Ohio had the highest average annual state-scale frequencies at 65% and 52%. Pixel-scale frequency results can assist in identifying portions of a lake that are more prone to cyanobacterial blooms, while lake- and state-scale frequency results can assist in the prioritization of sampling resources and mitigation efforts. Satellite imagery is limited by the presence of snow and ice, as imagery collected in these conditions are quality flagged and discarded. Thus, annual bloom frequencies within nine climate regions were investigated to determine whether missing data biased results in climate regions more prone to snow and ice, given that their annual summaries would be weighted toward the summer months when cyanobacterial blooms tend to occur. Results were unbiased by the time period selected in most climate regions, but a large bias was observed for the Northwest Rockies and Plains climate region. Moderate biases were observed for the Ohio Valley and the Southeast climate regions. Finally, a clustering analysis was used to identify areas of high and low cyanobacterial frequency across CONUS based on average annual lake-scale cyanobacterial frequencies for 2019. Several clusters were identified that transcended state, watershed, and eco-regional boundaries. Combined with additional data, results from the clustering analysis may offer insight regarding large-scale drivers of cyanobacterial blooms.

4.
Ecol Appl ; 30(8): e02205, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32602216

RESUMEN

Nutrient pollution from human activities remains a common problem facing stream ecosystems. Identifying ecological responses to phosphorus and nitrogen can inform decisions affecting the protection and management of streams and their watersheds. Diatoms are particularly useful because they are a highly diverse group of unicellular algae found in nearly all aquatic environments and are sensitive responders to increased nutrient concentrations. Here, we used DNA metabarcoding of stream diatoms as an approach to quantifying effects of total phosphorus (TP) and total nitrogen (TN). Threshold indicator taxa analysis (TITAN) identified operational taxonomic units (OTUs) that increased or decreased along TP and TN gradients along with nutrient concentrations at which assemblages had substantial changes in the occurrences and relative abundances of OTUs. Boosted regression trees showed that relative abundances of gene sequence reads for OTUs identified by TITAN as low P, high P, low N, or high N diatoms had strong relationships with nutrient concentrations, which provided support for potentially using these groups of diatoms as metrics in monitoring programs. Gradient forest analysis provided complementary information by characterizing multi-taxa assemblage change using multiple predictors and results from random forest models for each OTU. Collectively, these analyses showed that notable changes in diatom assemblage structure and OTUs began around 20 µg TP/L, low P diatoms decreased substantially and community change points occurred from 75 to 150 µg/L, and high P diatoms became increasingly dominant from 150 to 300 µg/L. Diatoms also responded to TN with large decreases in low N diatoms occurring from 280 to 525 µg TN/L and a transition to dominance by high N diatoms from 525-850 µg/L. These diatom responses to TP and TN could be used to inform protection efforts (i.e., anti-degradation) and management goals (i.e., nutrient reduction) in streams and watersheds. Our results add to the growing support for using diatom metabarcoding in monitoring programs.


Asunto(s)
Diatomeas , Ríos , Código de Barras del ADN Taxonómico , Diatomeas/genética , Ecosistema , Monitoreo del Ambiente , Humanos , Nutrientes , Fósforo/análisis
5.
Ecol Indic ; 111: 105976, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34326705

RESUMEN

Cyanobacterial harmful algal blooms are the most common form of harmful algal blooms in freshwater systems throughout the world. However, in situ sampling of cyanobacteria in inland lakes is limited both spatially and temporally. Satellite data has proven to be an effective tool to monitor cyanobacteria in freshwater lakes across the United States. This study uses data from the European Space Agency Envisat MEdium Resolution Imaging Spectrometer and the Sentinel-3 Ocean and Land Color Instrument to provide a national overview of the percentage of lakes experiencing a cyanobacterial bloom on a weekly basis for 2008-2011, 2017, and 2018. A total of 2321 lakes across the contiguous United States were included in the analysis. We examined four different thresholds to define when a waterbody is classified as experiencing a bloom. Across these four thresholds, we explored variability in bloom percentage with changes in seasonality and lake size. As a validation of algorithm performance, we analyzed the agreement between satellite observations and previously established ecological patterns, although data availability in the wintertime limited these comparisons on a year-round basis. Changes in cyanobacterial bloom percentage at the national scale followed the well-known temporal pattern of freshwater blooms. The percentage of lakes experiencing a bloom increased throughout the year, reached a maximum in fall, and decreased through the winter. Wintertime data, particularly in northern regions, were consistently limited due to snow and ice cover. With the exception of the Southeast and South, regional patterns mimicked patterns found at the national scale. The Southeast and South exhibited an unexpected pattern as cyanobacterial bloom percentage reached a maximum in the winter rather than the summer. Lake Jesup in Florida was used as a case study to validate this observed pattern against field observations of chlorophyll a. Results from this research establish a baseline of annual occurrence of cyanobacterial blooms in inland lakes across the United States. In addition, methods presented in this study can be tailored to fit the specific requirements of an individual system or region.

6.
Environ Sci Technol ; 52(17): 9926-9936, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30059206

RESUMEN

Ballast water remains a potent vector of non-native aquatic species introductions, despite increased global efforts to reduce risk of ballast water mediated invasions. This is particularly true of intracoastal vessel traffic, whose characteristics may limit the feasibility and efficacy of management through ballast water exchange (BWE). Here we utilize high throughput sequencing (HTS) to assess biological communities associated with ballast water being delivered to Valdez, Alaska from multiple source ports along the Pacific Coast of the United States. Our analyses indicate that BWE has a significant but modest effect on ballast water assemblages. Although overall richness was not reduced with exchange, we detected losses of some common benthic coastal taxa (e.g., decapods, mollusks, bryozoans, cnidaria) and gains of open ocean taxa (e.g., certain copepods, diatoms, and dinoflagellates), including some potentially toxic species. HTS-based metabarcoding identified significantly differentiated biodiversity signatures from individual source ports; this signal persisted, though weakened, in vessels undergoing BWE, indicating incomplete faunal turnover associated with management. Our analysis also enabled identification of taxa that may be of particular concern if established in Alaskan waters. While these results reveal a clear effect of BWE on diversity in intracoastal transit, they also indicate continued introduction risk of non-native and harmful taxa.


Asunto(s)
Biodiversidad , Navíos , Alaska
7.
Front Ecol Environ ; 16(6): 345-353, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31942166

RESUMEN

Biological invasions are largely considered to be a "numbers game", wherein the larger the introduction effort, the greater the probability that an introduced population will become established. However, conditions during transport - an early stage of the invasion - can be particularly harsh, thereby greatly reducing the size of a population available to establish in a new region. Some successful non-indigenous species are more tolerant of environmental and anthropogenic stressors than related native species, possibly stemming from selection (ie survival of only pre-adapted individuals for particular environmental conditions) during the invasion process. By reviewing current literature concerning population genetics and consequences of selection on population fitness, we propose that selection acting on transported populations can facilitate local adaptation, which may result in a greater likelihood of invasion than predicted by propagule pressure alone. Specifically, we suggest that detailed surveys should be conducted to determine interactions between molecular mechanisms and demographic factors, given that current management strategies may underestimate invasion risk.

8.
Biol Conserv ; 224: 199-208, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30245526

RESUMEN

Non-native species pose one of the greatest threats to native biodiversity, and can have severe negative impacts in freshwater ecosystems. Identifying regions of spatial overlap between high freshwater biodiversity and high invasion pressure may thus better inform the prioritization of freshwater conservation efforts. We employ geospatial analysis of species distribution data to investigate the potential threat of non-native species to aquatic animal taxa across the continental United States. We mapped non-native aquatic plant and animal species richness and cumulative invasion pressure to estimate overall negative impact associated with species introductions. These distributions were compared to distributions of native aquatic animal taxa derived from the International Union for the Conservation of Nature (IUCN) database. To identify hotspots of native biodiversity we mapped total species richness, number of threatened and endangered species, and a community index of species rarity calculated at the watershed scale. An overall priority index allowed identification of watersheds experiencing high pressure from non-native species and also exhibiting high native biodiversity conservation value. While priority regions are roughly consistent with previously reported prioritization maps for the US, we also recognize novel priority areas characterized by moderate-to-high native diversity but extremely high invasion pressure. We further compared priority areas with existing conservation protections as well as projected future threats associated with land use change. Our findings suggest that many regions of elevated freshwater biodiversity value are compromised by high invasion pressure, and are poorly safeguarded by existing conservation mechanisms and are likely to experience significant additional stresses in the future.

9.
J Sea Res ; 133: 43-52, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30147432

RESUMEN

Understanding the risks of biological invasion posed by ballast water-whether in the context of compliance testing, routine monitoring, or basic research-is fundamentally an exercise in biodiversity assessment, and as such should take advantage of the best tools available for tackling that problem. The past several decades have seen growing application of genetic methods for the study of biodiversity, driven in large part by dramatic technological advances in nucleic acids analysis. Monitoring approaches based on such methods have the potential to increase dramatically sampling throughput for biodiversity assessments, and to improve on the sensitivity, specificity, and taxonomic accuracy of traditional approaches. The application of targeted detection tools (largely focused on PCR but increasingly incorporating novel probe-based methodologies) has led to a paradigm shift in rare species monitoring, and such tools have already been applied for early detection in the context of ballast water surveillance. Rapid improvements in community profiling approaches based on high throughput sequencing (HTS) could similarly impact broader efforts to catalogue biodiversity present in ballast tanks, and could provide novel opportunities to better understand the risks of biotic exchange posed by ballast water transport-and the effectiveness of attempts to mitigate those risks. These various approaches still face considerable challenges to effective implementation, depending on particular management or research needs. Compliance testing, for instance, remains dependent on accurate quantification of viable target organisms; while tools based on RNA detection show promise in this context, the demands of such testing require considerable additional investment in methods development. In general surveillance and research contexts, both targeted and community-based approaches are still limited by various factors: quantification remains a challenge (especially for taxa in larger size classes), gaps in nucleic acids reference databases are still considerable, uncertainties in taxonomic assignment methods persist, and many applications have not yet matured sufficiently to offer standardized methods capable of meeting rigorous quality assurance standards. Nevertheless, the potential value of these tools, their growing utilization in biodiversity monitoring, and the rapid methodological advances over the past decade all suggest that they should be seriously considered for inclusion in the ballast water surveillance toolkit.

10.
J Environ Manage ; 202(Pt 1): 299-310, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28738203

RESUMEN

Following decades of ecologic and economic impacts from a growing list of nonindigenous and invasive species, government and management entities are committing to systematic early- detection monitoring (EDM). This has reinvigorated investment in the science underpinning such monitoring, as well as the need to convey that science in practical terms to those tasked with EDM implementation. Using the context of nonindigenous species in the North American Great Lakes, this article summarizes the current scientific tools and knowledge - including limitations, research needs, and likely future developments - relevant to various aspects of planning and conducting comprehensive EDM. We begin with the scope of the effort, contrasting target-species with broad-spectrum monitoring, reviewing information to support prioritization based on species and locations, and exploring the challenge of moving beyond individual surveys towards a coordinated monitoring network. Next, we discuss survey design, including effort to expend and its allocation over space and time. A section on sample collection and analysis overviews the merits of collecting actual organisms versus shed DNA, reviews the capabilities and limitations of identification by morphology, DNA target markers, or DNA barcoding, and examines best practices for sample handling and data verification. We end with a section addressing the analysis of monitoring data, including methods to evaluate survey performance and characterize and communicate uncertainty. Although the body of science supporting EDM implementation is already substantial, research and information needs (many already actively being addressed) include: better data to support risk assessments that guide choice of taxa and locations to monitor; improved understanding of spatiotemporal scales for sample collection; further development of DNA target markers, reference barcodes, genomic workflows, and synergies between DNA-based and morphology-based taxonomy; and tools and information management systems for better evaluating and communicating survey outcomes and uncertainty.


Asunto(s)
Especies Introducidas , Animales , ADN , Monitoreo del Ambiente , Great Lakes Region , Lagos , Medición de Riesgo
11.
Ecol Indic ; 80: 84-95, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30245589

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking source waters because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection, In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentine1-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs >1 hectare in area. Results from this study show that 5.6 % of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7 % of waterbodies were resolvable when a three by three pixel (3×3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3×3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organization's (WHO) high threshold for risk of 100,000 cells mL-1. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1 %) and Grand Lake St. Marys, OH (83 %) had the highest observed bloom frequencies per region. The method presented here may indicate locations with high exposure to cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational and drinking water sources.

12.
Mar Policy ; 85: 56-64, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29681680

RESUMEN

The European Union's Marine Strategy Framework Directive (MSFD) aims to adopt integrated ecosystem management approaches to achieve or maintain "Good Environmental Status" for marine waters, habitats and resources, including mitigation of the negative effects of non-indigenous species (NIS). The Directive further seeks to promote broadly standardized monitoring efforts and assessment of temporal trends in marine ecosystem condition, incorporating metrics describing the distribution and impacts of NIS. Accomplishing these goals will require application of advanced tools for NIS surveillance and risk assessment, particularly given known challenges associated with surveying and monitoring with traditional methods. In the past decade, a host of methods based on nucleic acids (DNA and RNA) analysis have been developed or advanced that promise to dramatically enhance capacity in assessing and managing NIS. However, ensuring that these rapidly evolving approaches remain accessible and responsive to the needs of resource managers remains a challenge. This paper provides recommendations for future development of these genetic tools for assessment and management of NIS in marine systems, within the context of the explicit requirements of the MSFD. Issues considered include technological innovation, methodological standardization, data sharing and collaboration, and the critical importance of shared foundational resources, particularly integrated taxonomic expertise. Though the recommendations offered here are not exhaustive, they provide a basis for future intentional (and international) collaborative development of a genetic toolkit for NIS research, capable of fulfilling the immediate and long term goals of marine ecosystem and resource conservation.

13.
Mol Carcinog ; 55(3): 268-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25620587

RESUMEN

Cyclic nucleotides (cAMP & cGMP) are critical intracellular second messengers involved in the transduction of a diverse array of stimuli and their catabolism is mediated by phosphodiesterases (PDEs). We previously detected focal genomic amplification of PDE1C in >90 glioblastoma multiforme (GBM) cells suggesting a potential as a novel therapeutic target in these cells. In this report, we show that genomic gain of PDE1C was associated with increased expression in low passage GBM-derived cell cultures. We demonstrate that PDE1C is essential in driving cell proliferation, migration and invasion in GBM cultures since silencing of this gene significantly mitigates these functions. We also define the mechanistic basis of this functional effect through whole genome expression analysis by identifying down-stream gene effectors of PDE1C which are involved in cell cycle and cell adhesion regulation. In addition, we also demonstrate that Vinpocetine, a general PDE1 inhibitor, can also attenuate proliferation with no effect on invasion/migration. Up-regulation of at least one of this gene set (IL8, CXCL2, FOSB, NFE2L3, SUB1, SORBS2, WNT5A, and MMP1) in TCGA GBM cohorts is associated with worse outcome and PDE1C silencing down-regulated their expression, thus also indicating potential to influence patient survival. Therefore we conclude that proliferation, migration, and invasion of GBM cells could also be regulated downstream of PDE1C.


Asunto(s)
Neoplasias Encefálicas/patología , Movimiento Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Invasividad Neoplásica/patología , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Invasividad Neoplásica/genética , Regulación hacia Arriba
14.
Nano Lett ; 13(2): 570-6, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23252684

RESUMEN

The function and fate of cells is influenced by many different factors, one of which is surface topography of the support culture substrate. Systematic studies of nanotopography and cell response have typically been limited to single cell types and a small set of topographical variations. Here, we show a radical expansion of experimental throughput using automated detection, measurement, and classification of co-cultured cells on a nanopillar array where feature height changes continuously from planar to 250 nm over 9 mm. Individual cells are identified and characterized by more than 200 descriptors, which are used to construct a set of rules for label-free segmentation into individual cell types. Using this approach we can achieve label-free segmentation with 84% confidence across large image data sets and suggest optimized surface parameters for nanostructuring of implant devices such as vascular stents.


Asunto(s)
Rastreo Celular/métodos , Células Endoteliales/citología , Fibroblastos/citología , Nanoestructuras/química , Nanotecnología/métodos , Rastreo Celular/instrumentación , Técnicas de Cocultivo , Fluorescencia , Humanos , Nanotecnología/instrumentación
15.
Environ DNA ; 6(1): 1-12, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38784600

RESUMEN

The economic and methodological efficiencies of environmental DNA (eDNA) based survey approaches provide an unprecedented opportunity to assess and monitor aquatic environments. However, instances of inadequate communication from the scientific community about confidence levels, knowledge gaps, reliability, and appropriate parameters of eDNA-based methods have hindered their uptake in environmental monitoring programs and, in some cases, has created misperceptions or doubts in the management community. To help remedy this situation, scientists convened a session at the Second National Marine eDNA Workshop to discuss strategies for improving communications with managers. These include articulating the readiness of different eDNA applications, highlighting the strengths and limitations of eDNA tools for various applications or use cases, communicating uncertainties associated with specified uses transparently, and avoiding the exaggeration of exploratory and preliminary findings. Several key messages regarding implementation, limitations, and relationship to existing methods were prioritized. To be inclusive of the diverse managers, practitioners, and researchers, we and the other workshop participants propose the development of communication workflow plans, using RACI (Responsible, Accountable, Consulted, Informed) charts to clarify the roles of all pertinent individuals and parties and to minimize the chance for miscommunications. We also propose developing decision support tools such as Structured Decision-Making (SDM) to help balance the benefits of eDNA sampling with the inherent uncertainty, and developing an eDNA readiness scale to articulate the technological readiness of eDNA approaches for specific applications. These strategies will increase clarity and consistency regarding our understanding of the utility of eDNA-based methods, improve transparency, foster a common vision for confidently applying eDNA approaches, and enhance their benefit to the monitoring and assessment community.

16.
Sci Total Environ ; 939: 173502, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38815829

RESUMEN

Recent advancements in DNA techniques, metabarcoding, and bioinformatics could help expand the use of benthic diatoms in monitoring and assessment programs by providing relatively quick and increasingly cost-effective ways to quantify diatom diversity in environmental samples. However, such applications of DNA-based approaches are relatively new, and in the United States, unknowns regarding their applications at large scales exist because only a few small-scale studies have been done. Here, we present results from the first nationwide survey to use DNA metabarcoding (rbcL) of benthic diatoms, which were collected from 1788 streams and rivers across nine ecoregions spanning the conterminous USA. At the national scale, we found that diatom assemblage structure (1) was strongly associated with total phosphorus and total nitrogen concentrations, conductivity, and pH and (2) had clear patterns that corresponded with differences in these variables among the nine ecoregions. These four variables were strong predictors of diatom assemblage structure in ecoregion-specific analyses, but our results also showed that diatom-environment relationships, the importance of environmental variables, and the ranges of these variables within which assemblage changes occurred differed among ecoregions. To further examine how assemblage data could be used for biomonitoring purposes, we used indicator species analysis to identify ecoregion-specific taxa that decreased or increased along each environmental gradient, and we used their relative abundances of gene reads in samples as metrics. These metrics were strongly correlated with their corresponding variable of interest (e.g., low phosphorus diatoms with total phosphorus concentrations), and generalized additive models showed how their relationships compared among ecoregions. These large-scale national patterns and nine sets of ecoregional results demonstrated that diatom DNA metabarcoding is a robust approach that could be useful to monitoring and assessment programs spanning the variety of conditions that exist throughout the conterminous United States.


Asunto(s)
Código de Barras del ADN Taxonómico , Diatomeas , Monitoreo del Ambiente , Ríos , Diatomeas/genética , Ríos/química , Estados Unidos , Monitoreo del Ambiente/métodos , Biodiversidad
17.
Divers Distrib ; 28(9): 1922-1933, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38269301

RESUMEN

Aim: The global shipping fleet, the primary means of transporting goods among countries, also serves as a major dispersal mechanism for marine invasive species. To date, researchers have primarily focussed on the role of ships in transferring marine macrofauna, often overlooking transfers of associated parasites, which can have larger impacts on naïve host individuals and populations. Here, we re-examine three previously published metabarcode datasets targeting zooplankton and protists in ships' ballast water to assess the diversity of parasites across life stages arriving to three major US ports. Location: Port of Hampton Roads in the Chesapeake Bay, Virginia; Ports of Texas City, Houston and Bayport in Galveston Bay, Texas; and Port of Valdez in Prince William Sound, Alaska. Methods: We selected all known parasitic taxa, using sequences generated from the small subunit gene (SSU) from ribosomal RNA (rRNA) amplified from (1) zooplankton collected from plankton tows (35 and 80 µm datasets) and (2) eukaryotes collected from samples of ships' ballast water (3 µm dataset). Results: In all three datasets, we found a broad range of parasitic taxa, including many protistan and metazoan parasites, that infect a wide range of hosts, from teleost fish to dinoflagellates. Parasite richness was highest in the 3 µm dataset and relatively uniform across arrival regions. Several parasite taxa were found in high relative abundance (based on number of sequences recovered) either in ships entering a single or across multiple regions. Main Conclusions: The ubiquity, diversity and relative abundance of parasites detected demonstrate ships are a potent vector for spreading marine parasites across the world's oceans, potentially contributing to reported increases in outbreaks of marine diseases. Future research is urgently needed to evaluate the fate of parasites upon arrival and the efficacy of ballast water treatment systems to reduce future transfers and colonization.

18.
Mar Pollut Bull ; 182: 113947, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35926436

RESUMEN

Ballast water is a leading pathway for the global introduction of aquatic nonindigenous species. Most international ships are expected to install ballast water management systems (BWMS) by 2024 to treat ballast water before release. This study examines if ballast water discharges managed by BWMS are meeting standards for organisms ≥50 µm in minimum dimension (i.e., <10 organisms per m3; typically zooplankton). Representative samples of ballast water were collected from 29 ships (using 14 different BWMS) arriving to Canada during 2017-2018. Fourteen samples (48 %) had zooplankton concentrations clearly exceeding the standard (ranging from 18 to 3822 organisms per m3). Nonetheless, compared to earlier management strategies, BWMS appear to reduce the frequency of high-risk introduction events. BWMS filter mesh size was an important predictor of zooplankton concentration following treatment. Greater rates of compliance may be achieved as ship crews gain experience with operation and maintenance of BWMS.


Asunto(s)
Navíos , Zooplancton , Animales , Especies Introducidas , Agua , Abastecimiento de Agua
19.
Water (Basel) ; 14(15): 1-24, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36213613

RESUMEN

Indicators based on nutrient-biota relationships in streams can inform water quality restoration and protection programs. Bacterial assemblages could be particularly useful indicators of nutrient effects because they are species-rich, important contributors to ecosystem processes in streams, and responsive to rapidly changing conditions. Here, we sampled 25 streams weekly (12-14 times each) and used 16S rRNA gene metabarcoding of periphyton-associated bacteria to quantify the effects of total phosphorus (TP) and total nitrogen (TN). Threshold indicator taxa analysis identified assemblage-level changes and amplicon sequence variants (ASVs) that increased or decreased with increasing TP and TN concentrations (i.e., low P, high P, low N, and high N ASVs). Boosted regression trees confirmed that relative abundances of gene sequence reads for these four indicator groups were associated with nutrient concentrations. Gradient forest analysis complemented these results by using multiple predictors and random forest models for each ASV to identify portions of TP and TN gradients at which the greatest changes in assemblage structure occurred. Synthesized statistical results showed bacterial assemblage structure began changing at 24 µg TP/L with the greatest changes occurring from 110 to 195 µg/L. Changes in the bacterial assemblages associated with TN gradually occurred from 275 to 855 µg/L. Taxonomic and phylogenetic analyses showed that low nutrient ASVs were commonly Firmicutes, Verrucomicrobiota, Flavobacteriales, and Caulobacterales, Pseudomonadales, and Rhodobacterales of Proteobacteria, whereas other groups, such as Chitinophagales of Bacteroidota, and Burkholderiales, Rhizobiales, Sphingomonadales, and Steroidobacterales of Proteobacteria comprised the high nutrient ASVs. Overall, the responses of bacterial ASV indicators in this study highlight the utility of metabarcoding periphyton-associated bacteria for quantifying biotic responses to nutrient inputs in streams.

20.
Sci Total Environ ; 831: 154960, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35378187

RESUMEN

Interest in developing periphytic diatom and bacterial indicators of nutrient effects continues to grow in support of the assessment and management of stream ecosystems and their watersheds. However, temporal variability could confound relationships between indicators and nutrients, subsequently affecting assessment outcomes. To document how temporal variability affects measures of diatom and bacterial assemblages obtained from DNA metabarcoding, we conducted weekly periphyton and nutrient sampling from July to October 2016 in 25 streams in a 1293 km2 mixed land use watershed. Measures of both diatom and bacterial assemblages were strongly associated with the percent agriculture in upstream watersheds and total phosphorus (TP) and total nitrogen (TN) concentrations. Temporal variability in TP and TN concentrations increased with greater amounts of agriculture in watersheds, but overall diatom and bacterial assemblage variability within sites-measured as mean distance among samples to corresponding site centroids in ordination space-remained consistent. This consistency was due in part to offsets between decreasing variability in relative abundances of taxa typical of low nutrient conditions and increasing variability in those typical of high nutrient conditions as mean concentrations of TP and TN increased within sites. Weekly low and high nutrient diatom and bacterial metrics were more strongly correlated with site mean nutrient concentrations over the sampling period than with same day measurements and more strongly correlated with TP than with TN. Correlations with TP concentrations were consistently strong throughout the study except briefly following two major precipitation events. Following these events, biotic relationships with TP reestablished within one to three weeks. Collectively, these results can strengthen interpretations of survey results and inform monitoring strategies and decision making. These findings have direct applications for improving the use of diatoms and bacteria, and the use of DNA metabarcoding, in monitoring programs and stream site assessments.


Asunto(s)
Diatomeas , Ríos , Código de Barras del ADN Taxonómico , ADN Bacteriano , Ecosistema , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Nutrientes , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA