Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Nephrol ; 53(2-3): 215-225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35196658

RESUMEN

INTRODUCTION: Metabolomics could offer novel prognostic biomarkers and elucidate mechanisms of diabetic kidney disease (DKD) progression. Via metabolomic analysis of urine samples from 995 CRIC participants with diabetes and state-of-the-art statistical modeling, we aimed to identify metabolites prognostic to DKD progression. METHODS: Urine samples (N = 995) were assayed for relative metabolite abundance by untargeted flow-injection mass spectrometry, and stringent statistical criteria were used to eliminate noisy compounds, resulting in 698 annotated metabolite ions. Utilizing the 698 metabolites' ion abundance along with clinical data (demographics, blood pressure, HbA1c, eGFR, and albuminuria), we developed univariate and multivariate models for the eGFR slope using penalized (lasso) and random forest models. Final models were tested on time-to-ESKD (end-stage kidney disease) via cross-validated C-statistics. We also conducted pathway enrichment analysis and a targeted analysis of a subset of metabolites. RESULTS: Six eGFR slope models selected 9-30 variables. In the adjusted ESKD model with highest C-statistic, valine (or betaine) and 3-(4-methyl-3-pentenyl)thiophene were associated (p < 0.05) with 44% and 65% higher hazard of ESKD per doubling of metabolite abundance, respectively. Also, 13 (of 15) prognostic amino acids, including valine and betaine, were confirmed in the targeted analysis. Enrichment analysis revealed pathways implicated in kidney and cardiometabolic disease. CONCLUSIONS: Using the diverse CRIC sample, a high-throughput untargeted assay, followed by targeted analysis, and rigorous statistical analysis to reduce false discovery, we identified several novel metabolites implicated in DKD progression. If replicated in independent cohorts, our findings could inform risk stratification and treatment strategies for patients with DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Insuficiencia Renal Crónica , Albuminuria , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Progresión de la Enfermedad , Humanos , Metabolómica/métodos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo
2.
Am J Physiol Renal Physiol ; 319(4): F712-F728, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32893663

RESUMEN

Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus/tratamiento farmacológico , Glucósidos/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Natriuresis/efectos de los fármacos , Natriuréticos/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Equilibrio Ácido-Base/efectos de los fármacos , Animales , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Glucosuria/metabolismo , Glucosuria/fisiopatología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Intercambiador 3 de Sodio-Hidrógeno/deficiencia , Intercambiador 3 de Sodio-Hidrógeno/genética
3.
Am J Kidney Dis ; 76(4): 511-520, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32387023

RESUMEN

RATIONALE & OBJECTIVE: Biomarkers that provide reliable evidence of future diabetic kidney disease (DKD) are needed to improve disease management. In a cross-sectional study, we previously identified 13 urine metabolites that had levels reduced in DKD compared with healthy controls. We evaluated associations of these 13 metabolites with future DKD progression. STUDY DESIGN: Prospective cohort. SETTING & PARTICIPANTS: 1,001 Chronic Renal Insufficiency Cohort (CRIC) participants with diabetes with estimated glomerular filtration rates (eGFRs) between 20 and 70mL/min/1.73m2 were followed up prospectively for a median of 8 (range, 2-10) years. PREDICTORS: 13 urine metabolites, age, race, sex, smoked more than 100 cigarettes in lifetime, body mass index, hemoglobin A1c level, blood pressure, urinary albumin, and eGFR. OUTCOMES: Annual eGFR slope and time to incident kidney failure with replacement therapy (KFRT; ie, initiation of dialysis or receipt of transplant). ANALYTICAL APPROACH: Several clinical metabolite models were developed for eGFR slope as the outcome using stepwise selection and penalized regression, and further tested on the time-to-KFRT outcome. A best cross-validated (final) prognostic model was selected based on high prediction accuracy for eGFR slope and high concordance statistic for incident KFRT. RESULTS: During follow-up, mean eGFR slope was-1.83±1.92 (SD) mL/min/1.73m2 per year; 359 (36%) participants experienced KFRT. Median time to KFRT was 7.45 years from the time of entry to the CRIC Study. In our final model, after adjusting for clinical variables, levels of metabolites 3-hydroxyisobutyrate (3-HIBA) and 3-methylcrotonyglycine had a significant negative association with eGFR slope, whereas citric and aconitic acid were positively associated. Further, 3-HIBA and aconitic acid levels were associated with higher and lower risk for KFRT, respectively (HRs of 2.34 [95% CI, 1.51-3.62] and 0.70 [95% CI, 0.51-0.95]). LIMITATIONS: Subgroups for whom metabolite signatures may not be optimal, nontargeted metabolomics by flow-injection analysis, and 2-stage modeling approaches. CONCLUSIONS: Urine metabolites may offer insights into DKD progression. If replicated in future studies, aconitic acid and 3-HIBA could identify individuals with diabetes at high risk for GFR decline, potentially leading to improved clinical care and targeted therapies.


Asunto(s)
Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/orina , Tasa de Filtración Glomerular , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/orina , Anciano , Biomarcadores/orina , Estudios de Cohortes , Nefropatías Diabéticas/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/metabolismo
4.
Am J Nephrol ; 51(10): 839-848, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33053547

RESUMEN

BACKGROUND: Individuals with type 1 diabetes (T1D) demonstrate varied trajectories of estimated glomerular filtration rate (eGFR) decline. The molecular pathways underlying rapid eGFR decline in T1D are poorly understood, and individual-level risk of rapid eGFR decline is difficult to predict. METHODS: We designed a case-control study with multiple exposure measurements nested within 4 well-characterized T1D cohorts (FinnDiane, Steno, EDC, and CACTI) to identify biomarkers associated with rapid eGFR decline. Here, we report the rationale for and design of these studies as well as results of models testing associations of clinical characteristics with rapid eGFR decline in the study population, upon which "omics" studies will be built. Cases (n = 535) and controls (n = 895) were defined as having an annual eGFR decline of ≥3 and <1 mL/min/1.73 m2, respectively. Associations of demographic and clinical variables with rapid eGFR decline were tested using logistic regression, and prediction was evaluated using area under the curve (AUC) statistics. Targeted metabolomics, lipidomics, and proteomics are being performed using high-resolution mass-spectrometry techniques. RESULTS: At baseline, the mean age was 43 years, diabetes duration was 27 years, eGFR was 94 mL/min/1.73 m2, and 62% of participants were normoalbuminuric. Over 7.6-year median follow-up, the mean annual change in eGFR in cases and controls was -5.7 and 0.6 mL/min/1.73 m2, respectively. Younger age, longer diabetes duration, and higher baseline HbA1c, urine albumin-creatinine ratio, and eGFR were significantly associated with rapid eGFR decline. The cross-validated AUC for the predictive model incorporating these variables plus sex and mean arterial blood pressure was 0.74 (95% CI: 0.68-0.79; p < 0.001). CONCLUSION: Known risk factors provide moderate discrimination of rapid eGFR decline. Identification of blood and urine biomarkers associated with rapid eGFR decline in T1D using targeted omics strategies may provide insight into disease mechanisms and improve upon clinical predictive models using traditional risk factors.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/diagnóstico , Tasa de Filtración Glomerular/fisiología , Pruebas de Función Renal/métodos , Adulto , Biomarcadores/análisis , Biomarcadores/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/orina , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/orina , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Lipidómica/métodos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Proteómica/métodos , Curva ROC , Factores de Riesgo
5.
Am J Physiol Renal Physiol ; 317(2): F419-F434, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166707

RESUMEN

Na+/H+ exchanger isoform 3 (NHE3) contributes to Na+/bicarbonate reabsorption and ammonium secretion in early proximal tubules. To determine its role in the diabetic kidney, type 1 diabetic Akita mice with tubular NHE3 knockdown [Pax8-Cre; NHE3-knockout (KO) mice] were generated. NHE3-KO mice had higher urine pH, more bicarbonaturia, and compensating increases in renal mRNA expression for genes associated with generation of ammonium, bicarbonate, and glucose (phosphoenolpyruvate carboxykinase) in proximal tubules and H+ and ammonia secretion and glycolysis in distal tubules. This left blood pH and bicarbonate unaffected in nondiabetic and diabetic NHE3-KO versus wild-type mice but was associated with renal upregulation of proinflammatory markers. Higher renal phosphoenolpyruvate carboxykinase expression in NHE3-KO mice was associated with lower Na+-glucose cotransporter (SGLT)2 and higher SGLT1 expression, indicating a downward tubular shift in Na+ and glucose reabsorption. NHE3-KO was associated with lesser kidney weight and glomerular filtration rate (GFR) independent of diabetes and prevented diabetes-associated albuminuria. NHE3-KO, however, did not attenuate hyperglycemia or prevent diabetes from increasing kidney weight and GFR. Higher renal gluconeogenesis may explain similar hyperglycemia despite lower SGLT2 expression and higher glucosuria in diabetic NHE3-KO versus wild-type mice; stronger SGLT1 engagement could have affected kidney weight and GFR responses. Chronic kidney disease in humans is associated with reduced urinary excretion of metabolites of branched-chain amino acids and the tricarboxylic acid cycle, a pattern mimicked in diabetic wild-type mice. This pattern was reversed in nondiabetic NHE3-KO mice, possibly reflecting branched-chain amino acids use for ammoniagenesis and tricarboxylic acid cycle upregulation to support formation of ammonia, bicarbonate, and glucose in proximal tubule. NHE3-KO, however, did not prevent the diabetes-induced urinary downregulation in these metabolites.


Asunto(s)
Equilibrio Ácido-Base , Diabetes Mellitus Tipo 1/metabolismo , Nefropatías Diabéticas/metabolismo , Túbulos Renales/metabolismo , Reabsorción Renal , Intercambiador 3 de Sodio-Hidrógeno/deficiencia , Sodio/orina , Equilibrio Ácido-Base/genética , Aminoácidos de Cadena Ramificada/orina , Amoníaco/orina , Animales , Bicarbonatos/orina , Biomarcadores/orina , Glucemia/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 1/orina , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/orina , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Concentración de Iones de Hidrógeno , Túbulos Renales/fisiopatología , Masculino , Metabolómica/métodos , Ratones Endogámicos C57BL , Ratones Noqueados , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/genética
6.
J Cell Sci ; 130(19): 3248-3260, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28808085

RESUMEN

Each mitochondrial compartment contains varying protein compositions that underlie a diversity of localized functions. Insights into the localization of mitochondrial intermembrane space-bridging (MIB) components will have an impact on our understanding of mitochondrial architecture, dynamics and function. By using the novel visualizable genetic tags miniSOG and APEX2 in cultured mouse cardiac and human astrocyte cell lines and performing electron tomography, we have mapped at nanoscale resolution three key MIB components, Mic19, Mic60 and Sam50 (also known as CHCHD3, IMMT and SAMM50, respectively), in the environment of structural landmarks such as cristae and crista junctions (CJs). Tagged Mic19 and Mic60 were located at CJs, distributed in a network pattern along the mitochondrial periphery and also enriched inside cristae. We discovered an association of Mic19 with cytochrome c oxidase subunit IV. It was also found that tagged Sam50 is not uniformly distributed in the outer mitochondrial membrane and appears to incompletely overlap with Mic19- or Mic60-positive domains, most notably at the CJs.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Línea Celular Transformada , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética
7.
Diabetes Obes Metab ; 21(11): 2422-2428, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31264758

RESUMEN

AIM: To assess the effects of the sodium-glucose co-transporter-2 (SGLT2) inhibitor dapagliflozin on a pre-specified panel of 13 urinary metabolites linked to mitochondrial metabolism in people with type 2 diabetes and elevated urine albumin levels. MATERIALS AND METHODS: Urine and plasma samples were used from a double-blind, randomized, placebo-controlled crossover trial in 31 people with type 2 diabetes, with an albumin:creatinine ratio >100 mg/g, and who were on a stable dose of an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Dapagliflozin or placebo treatment periods each lasted 6 weeks, with a 6-week washout period in between. Urinary and plasma metabolites were quantified by gas-chromatography mass spectrometry, corrected for creatinine level, and then combined into a single-valued urinary metabolite index. Fractional excretion of the metabolites was calculated. RESULTS: All 13 urinary metabolites were detectable. After 6 weeks of dapagliflozin therapy, nine of the 13 metabolites were significantly increased from baseline. The urinary metabolite index increased by 42% (95% confidence interval [CI] 8.5 to 85.6; P = .01) with placebo versus 121% (95% CI 69 to 189; P < .001) with dapaglifozin. The placebo-adjusted effect was 56% (95% CI 11 to 118; P = .012). In plasma, seven of the 13 metabolites were detectable, and none was modified by dapagliflozin. CONCLUSIONS: Dapagliflozin significantly increased a panel of urinary metabolites previously linked to mitochondrial metabolism. These data support the hypothesis that SGLT2 inhibitors improve mitochondrial function, and improvements in mitochondrial function could be a mechanism for kidney protection. Future studies with longer treatment duration and clinical outcomes are needed to confirm the clinical impact of these findings.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Diabetes Mellitus Tipo 2 , Glucósidos/uso terapéutico , Metaboloma/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Anciano , Albuminuria/orina , Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/orina , Femenino , Glucósidos/farmacología , Humanos , Cuerpos Cetónicos/orina , Masculino , Metabolómica , Persona de Mediana Edad , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
8.
Metabolomics ; 14(6): 84, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-30830355

RESUMEN

INTRODUCTION: Little is known about the association of urine metabolites with structural lesions in persons with diabetes. OBJECTIVES: We examined the relationship between 12 urine metabolites and kidney structure in American Indians with type 2 diabetes. METHODS: Data were from a 6-year clinical trial that assessed renoprotective efficacy of losartan, and included a kidney biopsy at the end of the treatment period. Metabolites were measured in urine samples collected within a median of 6.5 months before the research biopsy. Associations of the creatinine-adjusted urine metabolites with kidney structural variables were examined by Pearson's correlations and multivariable linear regression after adjustment for age, sex, diabetes duration, hemoglobin A1c, mean arterial pressure, glomerular filtration rate (iothalamate), and losartan treatment. RESULTS: Participants (n = 62, mean age 45 ± 10 years) had mean ± standard deviation glomerular filtration rate of 137 ± 50 ml/min and median (interquartile range) urine albumin:creatinine ratio of 34 (14-85) mg/g near the time of the biopsy. Urine aconitic and glycolic acids correlated positively with glomerular filtration surface density (partial r = 0.29, P = 0.030 and r = 0.50, P < 0.001) and total filtration surface per glomerulus (partial r = 0.32, P = 0.019 and r = 0.43, P = 0.001). 2-ethyl 3-OH propionate correlated positively with the percentage of fenestrated endothelium (partial r = 0.32, P = 0.019). Citric acid correlated negatively with mesangial fractional volume (partial r=-0.36, P = 0.007), and homovanillic acid correlated negatively with podocyte foot process width (partial r=-0.31, P = 0.022). CONCLUSIONS: Alterations of urine metabolites may associate with early glomerular lesions in diabetic kidney disease.


Asunto(s)
Biomarcadores/orina , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/diagnóstico , Metaboloma , Adulto , Estudios Transversales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/orina , Femenino , Tasa de Filtración Glomerular , Humanos , Indígenas Norteamericanos , Pruebas de Función Renal , Masculino , Persona de Mediana Edad
9.
Proc Natl Acad Sci U S A ; 112(41): 12681-6, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417071

RESUMEN

Cyclic AMP/protein kinase A (cAMP/PKA) and glucocorticoids promote the death of many cell types, including cells of hematopoietic origin. In wild-type (WT) S49 T-lymphoma cells, signaling by cAMP and glucocorticoids converges on the induction of the proapoptotic B-cell lymphoma-family protein Bim to produce mitochondria-dependent apoptosis. Kin(-), a clonal variant of WT S49 cells, lacks PKA catalytic (PKA-Cα) activity and is resistant to cAMP-mediated apoptosis. Using sorbitol density gradient fractionation, we show here that in kin(-) S49 cells PKA-Cα is not only depleted but the residual PKA-Cα mislocalizes to heavier cell fractions and is not phosphorylated at two conserved residues (Ser(338) or Thr(197)). In WT S49 cells, PKA-regulatory subunit I (RI) and Bim coimmunoprecipitate upon treatment with cAMP analogs and forskolin (which increases endogenous cAMP concentrations). By contrast, in kin(-) cells, expression of PKA-RIα and Bim is prominently decreased, and increases in cAMP do not increase Bim expression. Even so, kin(-) cells undergo apoptosis in response to treatment with the glucocorticoid dexamethasone (Dex). In WT cells, glucorticoid-mediated apoptosis involves an increase in Bim, but in kin(-) cells, Dex-promoted cell death appears to occur by a caspase 3-independent apoptosis-inducing factor pathway. Thus, although cAMP/PKA-Cα and PKA-R1α/Bim mediate apoptotic cell death in WT S49 cells, kin(-) cells resist this response because of lower levels of PKA-Cα and PKA-RIα subunits as well as Bim. The findings for Dex-promoted apoptosis imply that these lymphoma cells have adapted to selective pressure that promotes cell death by altering canonical signaling pathways.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Dexametasona/farmacología , Linfoma/tratamiento farmacológico , Modelos Biológicos , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Colforsina/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Linfoma/enzimología , Linfoma/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
10.
Diabetologia ; 60(4): 729-739, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28188334

RESUMEN

AIMS/HYPOTHESIS: In this study, we aimed to evaluate the therapeutic potential of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-activated protein kinase, for ameliorating high-fat diet (HFD)-induced pathophysiology in mice. We also aimed to determine whether the beneficial effects of AICAR were dependent on adiponectin. Furthermore, human adipose tissue was used to examine the effect of AICAR ex vivo. METHODS: Six-week-old male C57BL/6J wild-type and Adipoq -/- mice were fed a standard-fat diet (10% fat) or an HFD (60% fat) for 12 weeks and given vehicle or AICAR (500 µg/g) three times/week from weeks 4-12. Diet-induced pathophysiology was examined in mice after 11 weeks by IPGTT and after 12 weeks by flow cytometry and western blotting. Human adipose tissue biopsies from obese (BMI 35-50 kg/m2) individuals were incubated with vehicle or AICAR (1 mmol/l) for 6 h at 37°C, after which inflammation was characterised by ELISA (TNF-α) and flow cytometry. RESULTS: AICAR attenuated adipose inflammation in mice fed an HFD, promoting an M1-to-M2 macrophage phenotype switch, while reducing infiltration of CD8+ T cells. AICAR treatment of mice fed an HFD partially restored glucose tolerance and attenuated hepatic steatosis and kidney disease, as evidenced by reduced albuminuria (p < 0.05), urinary H2O2 (p < 0.05) and renal superoxide levels (p < 0.01) in both wild-type and Adipoq -/- mice. AICAR-mediated protection occurred independently of adiponectin, as similar protection was observed in wild-type and Adipoq -/- mice. In addition, AICAR promoted an M1-to-M2 macrophage phenotype switch and reduced TNF-α production in tissue explants from obese human patients. CONCLUSIONS/INTERPRETATION: AICAR may promote metabolic health and protect against obesity-induced systemic diseases in an adiponectin-independent manner. Furthermore, AICAR reduced inflammation in human adipose tissue explants, suggesting by proof-of-principle that the drug may reduce obesity-induced complications in humans. TRIAL REGISTRATION: ClinicalTrials.gov NCT02322073.


Asunto(s)
Adiponectina/metabolismo , Dieta Alta en Grasa/efectos adversos , Adiponectina/genética , Animales , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Renales/inmunología , Enfermedades Renales/metabolismo , Hepatopatías/inmunología , Hepatopatías/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/inmunología , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA