Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 474(7351): 385-9, 2011 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-21602824

RESUMEN

Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single injection of live, but not dead, attenuated microorganisms stripped of their virulence factors. Pathogen-associated molecular patterns (PAMPs), which are detected by the immune system, are present in both live and killed vaccines, indicating that certain poorly characterized aspects of live microorganisms, not incorporated in dead vaccines, are particularly effective at inducing protective immunity. Here we show that the mammalian innate immune system can directly sense microbial viability through detection of a special class of viability-associated PAMPs (vita-PAMPs). We identify prokaryotic messenger RNA as a vita-PAMP present only in viable bacteria, the recognition of which elicits a unique innate response and a robust adaptive antibody response. Notably, the innate response evoked by viability and prokaryotic mRNA was thus far considered to be reserved for pathogenic bacteria, but we show that even non-pathogenic bacteria in sterile tissues can trigger similar responses, provided that they are alive. Thus, the immune system actively gauges the infectious risk by searching PAMPs for signatures of microbial life and thus infectivity. Detection of vita-PAMPs triggers a state of alert not warranted for dead bacteria. Vaccine formulations that incorporate vita-PAMPs could thus combine the superior protection of live vaccines with the safety of dead vaccines.


Asunto(s)
Inmunidad Innata/inmunología , Viabilidad Microbiana/genética , Viabilidad Microbiana/inmunología , ARN Bacteriano/inmunología , ARN Mensajero/inmunología , Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Bacterias/genética , Bacterias/inmunología , Bacterias/patogenicidad , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Proteínas Portadoras/metabolismo , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interferón beta/genética , Interferón beta/inmunología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis , Fagosomas/inmunología , Fagosomas/microbiología , ARN Bacteriano/genética , ARN Mensajero/genética , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología , Factores de Virulencia
2.
J Immunol ; 184(5): 2504-11, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20100930

RESUMEN

CD1 proteins present self- and foreign lipid Ags to activate specific T cells in the mammalian immune system. These T cells play an important role in controlling autoimmune diseases, suppression of tumor growth, and host defense against invading pathogens. Humans use five CD1 isoforms, whereas only two exist in birds. Unlike mammals' CD1, the structure of chicken CD1-2 showed a primitive lipid-binding groove, suggesting that chicken may only recognize single-chain lipids. In contrast, the crystal structure of the second chicken CD1 isoform, chCD1-1, reported in this study at 2.2 A resolution, reveals an elaborated binding groove with a dual-pocket, dual-cleft architecture. The A' and F' deep pockets are separated from each other, but each is connected to a hydrophobic surface cleft, which may participate in lipid binding. The long endogenous ligand found inside the binding groove of chCD1-1, together with binding data on various glycolipids and mycolic acid, strongly suggest that the unique avian CD1 family could bind long dual- and possibly triacyl-chain lipids.


Asunto(s)
Antígenos CD1/química , Pollos/inmunología , Lípidos/química , Secuencia de Aminoácidos , Animales , Antígenos CD1/clasificación , Antígenos CD1/genética , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Glucolípidos/química , Humanos , Ligandos , Mamíferos/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Ácidos Micólicos/química , Filogenia , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Spodoptera
3.
Proc Natl Acad Sci U S A ; 105(46): 17925-30, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19004781

RESUMEN

The molecular details of glycolipid presentation by CD1 antigen-presenting molecules are well studied in mammalian systems. However, little is known about how these non-classical MHC class I (MHCI) molecules diverged from the MHC locus to create a more complex, hydrophobic binding groove that binds lipids rather than peptides. To address this fundamental question, we have determined the crystal structure of an avian CD1 (chCD1-2) that shares common ancestry with mammalian CD1 from approximately 310 million years ago. The chCD1-2 antigen-binding site consists of a compact, narrow, central hydrophobic groove or pore rather than the more open, 2-pocket architecture observed in mammalian CD1s. Potential antigens then would be restricted in size to single-chain lipids or glycolipids. An endogenous ligand, possibly palmitic acid, serves to illuminate the mode and mechanism of ligand interaction with chCD1-2. The palmitate alkyl chain is inserted into the relatively shallow hydrophobic pore; its carboxyl group emerges at the receptor surface and is stabilized by electrostatic and hydrogen bond interactions with an arginine residue that is conserved in all known CD1 proteins. In addition, other novel features, such as an A' loop that interrupts and segments the normally long, continuous alpha1 helix, are unique to chCD1-2 and contribute to the unusually narrow binding groove, thereby limiting its size. Because birds and mammals share a common ancestor, but the rate of evolution is slower in birds than in mammals, the chCD1-2-binding groove probably represents a more primordial CD1-binding groove.


Asunto(s)
Antígenos CD1/química , Antígenos/metabolismo , Pollos/inmunología , Mamíferos/inmunología , Animales , Sitios de Unión , Evolución Biológica , Biología Computacional , Cristalografía por Rayos X , Humanos , Ligandos , Lípidos/química , Modelos Moleculares , Ácido Palmítico/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
4.
Proc Natl Acad Sci U S A ; 105(32): 11281-6, 2008 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-18685099

RESUMEN

Dendritic cells (DC) present lipid and peptide antigens to T cells on CD1 and MHC Class II (MHCII), respectively. The relative contribution of these systems during the initiation of adaptive immunity after microbial infection is not characterized. MHCII molecules normally acquire antigen and rapidly traffic from phagolysosomes to the plasma membrane as part of DC maturation, whereas CD1 molecules instead continually recycle between these sites before, during, and after DC maturation. We find that in Mycobacterium tuberculosis (Mtb)-infected DCs, CD1 presents antigens quickly. Surprisingly, rapid DC maturation results in early failure and delay in MHCII presentation. Whereas both CD1b and MHCII localize to bacterial phagosomes early after phagocytosis, MHCII traffics from the phagosome to the plasma membrane with a rapid kinetic that can precede antigen availability and loading. Thus, rather than facilitating antigen presentation, a lack of coordination in timing may allow organisms to use DC maturation as a mechanism of immune evasion. In contrast, CD1 antigen presentation occurs in the face of Mtb infection and rapid DC maturation because a pool of CD1 molecules remains available on the phagolysosome membrane that is able to acquire lipid antigens and deliver them to the plasma membrane.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos CD1/inmunología , Células Dendríticas/inmunología , Lípidos/inmunología , Mycobacterium tuberculosis/inmunología , Péptidos/inmunología , Tuberculosis/inmunología , Transporte Biológico Activo/inmunología , Membrana Celular/inmunología , Células Cultivadas , Células Dendríticas/microbiología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Cinética , Fagocitosis/inmunología , Fagosomas/inmunología , Linfocitos T/inmunología
5.
J Exp Med ; 200(12): 1673-9, 2004 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-15611293

RESUMEN

Cadherins are integral membrane proteins expressed in tissue-restricted patterns that mediate homophilic intercellular adhesion. During development, they orchestrate tissue morphogenesis and, in the adult, they determine tissue integrity and architecture. The synovial lining is a condensation of fibroblast-like synoviocytes (FLS) and macrophages one to three cells thick. These cells are embedded within the extracellular matrix, but the structure is neither an epithelium nor an endothelium. Previously, the basis for organization of the synovium into a tissue was unknown. Here, we cloned cadherin-11 from human rheumatoid arthritis (RA)-derived FLS. We developed L cell transfectants expressing cadherin-11, cadherin-11 fusion proteins, and anti-cadherin-11 mAb. Cadherin-11 was found to be expressed mainly in the synovial lining by immunohistologic staining of human synovium. FLS adhered to cadherin-11-Fc, and transfection of cadherin-11 conferred the formation of tissue-like sheets and lining-like structures upon fibroblasts in vitro. These findings support a key role for cadherin-11 in the specific adhesion of FLS and in synovial tissue organization and behavior in health and RA.


Asunto(s)
Cadherinas/metabolismo , Fibroblastos/metabolismo , Membrana Sinovial/metabolismo , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Cadherinas/genética , Adhesión Celular/genética , Fibroblastos/patología , Regulación de la Expresión Génica/genética , Humanos , Células L , Ratones , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Membrana Sinovial/citología , Membrana Sinovial/patología
6.
J Immunol ; 181(4): 2292-302, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18684918

RESUMEN

NKT cells play a protective role in immune responses against infectious pathogens. However, when the NKT cell response to infection is initiated and terminated is unknown. In this study, we demonstrate that NKT cells become activated, proliferate, and exert their effector function before MHC-restricted T cells during infection with Mycobacterium bovis bacillus Calmette-Guérin in mice. After a cell expansion phase, NKT cells underwent cell death, which contracts their numbers back to baseline. Surprisingly, despite ongoing infection, the remaining NKT cells were profoundly unresponsive to TCR stimulation, while MHC-restricted T cells were vigorously proliferating and producing IFN-gamma. Similarly, we show that NKT cells became unresponsive in uninfected mice after receiving a single exposure to a TLR agonist LPS, suggesting that NKT cell unresponsiveness may be a major mechanism of terminating their response in many infectious conditions. This characterization of the NKT cell response in antimicrobial immunity indicates that rapid NKT cell activation contributes to the innate phase of the response to the infectious pathogen, but then, the NKT cell response is shut down by two mechanisms; apoptotic contraction and marked unresponsiveness to TCR stimulation, as a synchronized hand off to MHC-restricted T cells occurs.


Asunto(s)
Citotoxicidad Inmunológica , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/microbiología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/microbiología , Animales , Muerte Celular/inmunología , Proliferación Celular , Femenino , Tolerancia Inmunológica , Interferón gamma/biosíntesis , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Lipopolisacáridos/administración & dosificación , Activación de Linfocitos/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Ratones , Ratones Endogámicos C57BL , Mycobacterium bovis/inmunología , Receptores de Antígenos de Linfocitos T/agonistas , Receptores de Antígenos de Linfocitos T/fisiología , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonelosis Animal/patología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis/patología
7.
Immunology ; 125(3): 289-301, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18445008

RESUMEN

Dendritic cells (DCs) are highly potent antigen-presenting cells (APCs) and play a vital role in stimulating naïve T cells. Treatment of human blood monocytes with the cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 stimulates them to develop into immature dendritic cells (iDCs) in vitro. DCs generated by this pathway have a high capacity to prime and activate resting T cells and prominently express CD1 antigen-presenting molecules on the cell surface. The presence of human serum during the differentiation of iDCs from monocytes inhibits the expression of CD1a, CD1b and CD1c, but not CD1d. Correspondingly, T cells that are restricted by CD1c showed poor responses to DCs that were generated in the presence of human serum, while the responses of CD1d-restricted T cells were enhanced. We chemically fractionated human serum to isolate the bioactive factors that modulate surface expression of CD1 proteins during monocyte to DC differentiation. The human serum components that affected CD1 expression partitioned with polar organic soluble fractions. Lysophosphatidic acid and cardiolipin were identified as lipids present in normal human serum that potently modulate CD1 expression. Control of CD1 expression was mediated at the level of gene transcription and correlated with activation of the peroxisome proliferator-activated receptor (PPAR) nuclear hormone receptors. These findings indicate that the ability of human DCs to present lipid antigens to T cells through expression of CD1 molecules is sensitively regulated by lysophosphatidic acid and cardiolipin in serum, which are ligands that can activate PPAR transcription factors.


Asunto(s)
Antígenos CD1/metabolismo , Células Dendríticas/inmunología , Lípidos/inmunología , Presentación de Antígeno/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Técnicas de Cocultivo , Expresión Génica , Humanos , Activación de Linfocitos/inmunología , Receptores Activados del Proliferador del Peroxisoma/biosíntesis , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/inmunología , Suero/inmunología , Subgrupos de Linfocitos T/inmunología
8.
Mol Cell Biol ; 23(2): 526-33, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12509451

RESUMEN

Tumor necrosis factor alpha (TNF-alpha) plays an important role in host containment of infection by Mycobacterium tuberculosis, one of the leading causes of death by an infectious agent globally. Using the pathogenic M. tuberculosis strain H37Rv, we present evidence that upon stimulation of monocytic cells by M. tuberculosis a unique TNF-alpha enhanceosome is formed, and it is distinct from the TNF-alpha enhanceosome that forms in T cells stimulated by antigen engagement or virus infection. A distinct set of activators including ATF-2, c-jun, Ets, Sp1, Egr-1 and the coactivator proteins CBP/p300 are recruited to the TNF-alpha promoter after stimulation with M. tuberculosis. Furthermore, the formation of this enhanceosome is dependent on inducer-specific helical phasing relationships between transcription factor binding sites. We also show that the transcriptional activity of CBP/p300 is potentiated by mycobacterial stimulation of monocytes. The identification of TNF-alpha regulatory elements and coactivators involved in M. tuberculosis-stimulated gene expression thus provides potential selective molecular targets in the modulation of TNF-alpha gene expression in the setting of mycobacterial infection.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Inmediatas-Precoces , Mycobacterium tuberculosis/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Transcripción Activador 2 , Animales , Secuencia de Bases , Línea Celular , Cromatina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína p300 Asociada a E1A , Proteína 1 de la Respuesta de Crecimiento Precoz , Ensayo de Inmunoadsorción Enzimática , Fijadores/farmacología , Formaldehído/farmacología , Humanos , Luciferasas/metabolismo , Macrófagos/metabolismo , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Monocitos/microbiología , Plásmidos/metabolismo , Pruebas de Precipitina , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Factor de Transcripción Sp1/metabolismo , Linfocitos T/metabolismo , Linfocitos T/microbiología , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína Elk-1 con Dominio ets
9.
Curr Opin Microbiol ; 8(3): 323-30, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15939357

RESUMEN

The survival of intracellular pathogens within a host is determined by microbial evasion, which can be partially attributed to their subcellular trafficking strategies. Microscopic techniques have become increasingly important in understanding the cell biology of microbial infections. These recently developed techniques can be used for the subcellular localization of antigens not only in cultured cells but also within tissues such as Mycobacterium tuberculosis in lung and Mycobacterium leprae in skin. High-resolution immunofluorescence microscopy can be used in combination with cryo-immunogold electron microscopy using consecutive cryo-sections on the same tissue block forming a direct connection between the two microscopy techniques. The detection of mycobacterial lipid antigens in situ at an ultrastructural level is currently a challenge, but new modifications can be used to address this. These methods might be of interest to microbiologists and cell biologists who study host-pathogen interactions.


Asunto(s)
Microscopía por Crioelectrón/métodos , Microbiología/instrumentación , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/ultraestructura , Tuberculosis Pulmonar/microbiología , Antígenos Bacterianos/análisis , Células Cultivadas , Humanos , Lepra/microbiología , Lípidos/análisis , Microscopía Fluorescente/métodos , Mycobacterium leprae/química , Mycobacterium leprae/aislamiento & purificación , Mycobacterium leprae/ultraestructura , Mycobacterium tuberculosis/química
10.
J Invest Dermatol ; 121(3): 517-21, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12925210

RESUMEN

Langerhans cells are a critical component of skin immunity, capable of capturing protein antigens in the epidermis and presenting them to specific T cells in the context of major histocompatibility complex class II molecules. Recently, a major histocompatibility complex independent pathway of lipid antigen presentation has been identified and is mediated by molecules of the CD1 family (CD1a, CD1b, CD1c, and CD1d). Because Langerhans cells are professional antigen-presenting cells and express CD1a molecules prominently, we hypothesized that Langerhans cells might play a role in T cell responses directed against not only peptide antigens but also lipid antigens. Here, we show that freshly isolated immature Langerhans cells as well as mature Langerhans cells that have migrated from the epidermis are efficient in presenting foreign microbial lipid antigens to specific T cells whereas dermal dendritic cells express much less CD1a molecules and function inefficiently. Further, we found that Langerhans cells migrating from epidermal sheets that were exposed to microbial lipid antigens expressed lipid-antigen-loaded CD1a molecules on the cell surface, resulting in activation of specific T cells. These results underscore an outstanding ability of Langerhans cells to mediate CD1a-dependent lipid antigen presentation. Thus, Langerhans-cell-mediated skin immunity may involve T cell recognition of both peptide and lipid antigens.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos CD1/inmunología , Epidermis/inmunología , Células de Langerhans/inmunología , Lípidos/inmunología , Movimiento Celular/inmunología , Células Epidérmicas , Citometría de Flujo , Humanos , Células de Langerhans/microbiología , Células de Langerhans/ultraestructura , Microscopía Electrónica , Linfocitos T/inmunología
11.
Contrib Microbiol ; 10: 164-82, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12530326

RESUMEN

Taken together, the data generated thus far strongly suggest that CD1 plays a role in the immune response against various infections (table 1). For obvious reasons, the data gathered thus far using model infection systems have focused primarily on the mouse and therefore only examine the role of CD1d. This leaves an important gap in our understanding of the CD1 antigen presentation pathway given the potential role of CD1a, CD1b and CD1c for contributing to antimicrobial immunity. The functional dichotomy between group 1 and group 2 CD1 isoforms obviously requires further analysis. However, we propose that the group 1 CD1 (CD1a, CD1b, CD1c) antigen presentation pathway is closer to the traditional adaptive immune response mechanisms with the capacity to present unique foreign antigens to specific T cells. This broadens the universe antigens that T cells can use to target pathogens and provides important antimicrobial effector mechanisms that may be critical for combating some types of infections. Lipid antigens may also provide a more effective means of targeting intracellular pathogens by T cells since CD1 is able to sample almost all of the intracellular reservoirs that are exploited by this class of pathogen and may provide an important component of the cytotoxic T cell response [80]. On the other hand, the group 2 CD1 protein (CD1d) may be more intermediate in terms of lying functionally between the innate and adaptive immune systems. The activation of CD1d-restricted T cells may, therefore, help bridge the temporal gap between the onset of innate immunity and the purely adaptive responses typified by the MHC-restricted T cells. Hence, the CD1d-restricted [table: see text] T cells are primed for rapid high-level cytokine release. In addition, the interaction of CD1d-restricted T cells with CD1d on DCs can trigger the release of IL-4 and GM-CSF to promote maturation of tissue-resident DC at the site of infection. The maturation of tissue DC would lead to migration of the activated DC to regional lymph nodes and initiation of MHC-restricted T cell responses. Subsequent IL-12 production by the DC in response to CD1d-mediated T cell stimulation could then drive IFN-gamma production by CD1d-restricted T cells and influence the polarization of the T cell response to infection. In addition, early bursts of IFN-gamma by CD1d-restricted T cells could also upregulate antimicrobial activity in macrophages and activate other important effector cells such as NK cells prior to MHC-restricted T cell responses. In the constant struggle between the microbial pathogen and its host, the evolutionary balance almost always favors the microbe. The rapid rate of evolution and adaptation of the microbe accounts for most of this advantage. Hence, it is not surprising that the host immune system has evolved a complex set of pathways, in addition to the MHC, that are able to recognize and target the unique molecular signatures of infectious microorganisms. The lipid antigens presented by CD1 add to this array and thus provide a further layer of immune defense to the host for combating pathogens.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos CD1/inmunología , Enfermedades Transmisibles/inmunología , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Lípidos/inmunología , Modelos Biológicos , Subgrupos de Linfocitos T/inmunología
12.
Vet Immunol Immunopathol ; 102(1-2): 33-44, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15451613

RESUMEN

Guinea pigs are an alternative small animal model for many disease studies. Here we describe a pan-gammadelta monoclonal antibody (anti-TCRdelta1) specific for the constant region of human T cell receptor delta chains that cross-reacts with a subpopulation of guinea pig (Cavia porcellus) lymphocytes. The phenotype and distribution of this subpopulation is consistent with the guinea pig gammadelta T cell subset. FACS analysis of fresh PBMC and splenocytes from naïve guinea pigs revealed the presence of a subset of cells that stained with the anti-TCRdelta1 mAb. The relative percentage of anti-TCRdelta1 positive cells in PBMC and tissues is similar to that described for gammadelta T cells in other species. Immunohistochemistry of tissues also revealed a distribution of anti-TCRdelta1 positive cells consistent with gammadelta T cells. These data are further supported by staining of a polyclonal guinea pig T cell line that became progressively CD4 and CD8 negative in long-term culture. Analysis of PBMC from guinea pigs following aerosol infection with virulent Mycobacterium tuberculosis revealed no apparent changes in the steady-state percentage of blood gammadelta+ T cells. Taken together, these data suggest that the anti-TCRdelta1 antibody recognizes the gammadelta T cell subset in guinea pigs. This reagent may be useful for examining gammadelta T cells in various disease models where the guinea pig is a more desirable model for study.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Mycobacterium tuberculosis/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Animales , División Celular/inmunología , Reacciones Cruzadas/inmunología , Modelos Animales de Enfermedad , Femenino , Cobayas , Hemiterpenos/inmunología , Inmunohistoquímica , Pulmón/inmunología , Pulmón/microbiología , Organofosfatos/inmunología , Compuestos Organofosforados/inmunología , Organismos Libres de Patógenos Específicos , Bazo/citología , Bazo/inmunología , Bazo/microbiología , Linfocitos T/citología , Timo/citología , Timo/inmunología , Tuberculosis Pulmonar/microbiología
13.
J Leukoc Biol ; 94(4): 585-94, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23543767

RESUMEN

The murine Ly6 complex was identified 35 years ago using antisera to lymphocytes. With advances in mAb development, molecular cloning, and genome sequencing, >20 structurally related genes have been identified within this complex on chromosome 15. All members of the Ly6 family and their human homologues share the highly conserved LU domain and most also possess a GPI anchor. Interestingly, many Ly6 proteins are expressed in a lineage-specific fashion, and their expression often correlates with stages of differentiation. As a result, Ly6 proteins are frequently used as surface markers for leukocyte subset identification and targets for antibody-mediated depletion. Murine neutrophils display prominent surface expression of several Ly6 proteins, including Ly6B, Ly6C, and Ly6G. Although the physiology of most Ly6 proteins is not well understood, a role in neutrophil functions, such as migration, is recognized increasingly. In this review, we will provide an overview of the Ly6 complex and discuss, in detail, the specific Ly6 proteins implicated in neutrophil biology.


Asunto(s)
Antígenos Ly/metabolismo , Familia de Multigenes , Neutrófilos/metabolismo , Animales , Antígenos Ly/química , Antígenos Ly/genética , Orden Génico , Humanos , Estructura Terciaria de Proteína
14.
Dev Comp Immunol ; 34(2): 123-32, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19735672

RESUMEN

The CD1 molecules are cell-surface proteins that bind and present foreign lipids and glycolipids to T cells in a manner similar to the MHC system. While the mammalian CD1 antigen presentation pathway is well characterized, little is known about CD1 in non-mammalian vertebrates. Previous studies have identified two CD1 homologues in the chicken. We developed a monoclonal antibody designated NL1-1.A1 specific for the chCD1-1 isoform and have used this to characterize CD1 expression in tissues and cells of normal adult and embryonic chickens. The chCD1-1 isoform is expressed on a high proportion of cells in the spleen and bursa. Cells in the spleen that stain for CD1 are also positive for IgM and consistent with identification of these as B cells. In the skin, chCD1-1 is expressed on cells with dendritic morphology along the dermal-epidermal boundary and in epidermal sheets consistent with chicken Langerhans cells. Staining of cells in the medullary region of the chicken thymus was also observed. The CD1 proteins in mammals traffic to intracellular compartments to acquire lipid antigens for subsequent presentation to T cells on the surface. Consistent with data from mammal CD1 proteins, chCD1-1 partially co-localized with a lysosomal marker in the myeloid cell line BM2. Taken together, these data support broad distribution of chCD1-1 in both lymphoid and non-lymphoid tissues of the chicken that is remarkably similar to the distribution of CD1 isoforms in mammals.


Asunto(s)
Antígenos CD1/inmunología , Proteínas Aviares/inmunología , Pollos/inmunología , Animales , Antígenos CD1/metabolismo , Proteínas Aviares/metabolismo , Línea Celular , Embrión de Pollo , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Humanos , Tejido Linfoide/embriología , Tejido Linfoide/crecimiento & desarrollo , Tejido Linfoide/inmunología , Transporte de Proteínas
15.
J Exp Med ; 206(11): 2497-509, 2009 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-19808251

RESUMEN

Group 1 CD1 (CD1a, CD1b, and CD1c)-restricted T cells recognize mycobacterial lipid antigens and are found at higher frequencies in Mycobacterium tuberculosis (Mtb)-infected individuals. However, their role and dynamics during infection remain unknown because of the lack of a suitable small animal model. We have generated human group 1 CD1 transgenic (hCD1Tg) mice that express all three human group 1 CD1 isoforms and support the development of group 1 CD1-restricted T cells with diverse T cell receptor usage. Both mycobacterial infection and immunization with Mtb lipids elicit group 1 CD1-restricted Mtb lipid-specific T cell responses in hCD1Tg mice. In contrast to CD1d-restricted NKT cells, which rapidly respond to initial stimulation but exhibit anergy upon reexposure, group 1 CD1-restricted T cells exhibit delayed primary responses and more rapid secondary responses, similar to conventional T cells. Collectively, our data demonstrate that group 1 CD1-restricted T cells participate in adaptive immune responses upon mycobacterial infection and could serve as targets for the development of novel Mtb vaccines.


Asunto(s)
Antígenos CD1/inmunología , Inmunidad/inmunología , Mycobacterium/inmunología , Animales , Presentación de Antígeno/inmunología , Línea Celular , Células Dendríticas/citología , Células Dendríticas/inmunología , Epítopos , Humanos , Inmunización , Cinética , Lípidos/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Imitación Molecular , Mycobacterium tuberculosis/inmunología , Células T Asesinas Naturales/citología , Células T Asesinas Naturales/inmunología , Fenotipo , Linfocitos T Citotóxicos/inmunología , Células TH1/inmunología
16.
Vaccine ; 24(29-30): 5700-7, 2006 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-16725232

RESUMEN

The universe of antigens recognized by alphabeta T cells has recently been expanded to include not only major histocompatibility complex (MHC)-presented protein antigens but also CD1-presented lipid antigens. The significance of lipid-reactive T cells in host defense has been appreciated, using the guinea pig model of human tuberculosis. Here, we show that immunization with Mycobacterium bovis bacillus Calmette-Guerin (BCG), the commonly used anti-tuberculosis vaccine, induces activation of guinea pig cytotoxic T cells recognizing BCG lipids in the context of CD1 molecules. Further, BCG-immunized, but not mock-immunized, guinea pigs mount IgG antibody responses directed against lipoarabinomannnan, an essential cell wall lipid component of mycobacteria. These observations emphasize the ability of BCG to activate the host adaptive immunity to mycobacteria-derived lipids, which could potentially contribute to protection against tuberculosis.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Antígenos CD1/metabolismo , Vacuna BCG/inmunología , Lípidos/inmunología , Linfocitos T/inmunología , Tuberculosis/prevención & control , Animales , Vacuna BCG/administración & dosificación , Femenino , Cobayas , Humanos , Inmunoglobulina G/sangre , Lípidos/química , Lipopolisacáridos/inmunología , Activación de Linfocitos , Mycobacterium tuberculosis/inmunología , Linfocitos T Citotóxicos/inmunología
17.
Biochem Biophys Res Commun ; 328(3): 746-50, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15694409

RESUMEN

As the number of bisphosphonates continues to increase, they have found widespread use in an increasing number of clinical conditions. Ongoing examination of their targets and mechanisms of action has revealed that this surprisingly diverse class of drugs has effects beyond those first described for osteoclasts. These additional targets include osteoblasts, osteocytes, angiogenesis, and gammadelta T lymphocytes of the human immune system. The immune system effects are specifically targeted to gammadelta T cells and are reminiscent of the effects seen after ingestion of tea beverage. BP effects on such alternate targets may explain not only their antiresorptive effect, but also their effect on bone quality, tumors, and microbes.


Asunto(s)
Resorción Ósea/metabolismo , Resorción Ósea/prevención & control , Difosfonatos/administración & dosificación , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Linfocitos T/efectos de los fármacos , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Sistemas de Liberación de Medicamentos , Humanos , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Osteoporosis/metabolismo , Osteoporosis/prevención & control , Linfocitos T/inmunología , Linfocitos T/metabolismo
18.
Genes Dev ; 19(14): 1692-704, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15985609

RESUMEN

The Mycobacterium tuberculosis genome contains 11 serine/threonine kinase genes including two, pknA and pknB, that are part of an operon encoding genes involved in cell shape control and cell wall synthesis. Here we demonstrate that pknA and pknB are predominantly expressed during exponential growth, and that overexpression of these kinases slows growth and alters cell morphology. We determined the preferred substrate motifs of PknA and PknB, and identified three in vivo substrates of these kinases: PknB; Wag31, an ortholog of the cell division protein DivIVA; and Rv1422, a conserved protein of unknown function. Expression of different alleles of wag31 in vivo alters cell shape, in a manner dependent on the phosphoacceptor residue in the protein produced. Partial depletion of pknA or pknB results in narrow, elongated cells. These data indicate that signal transduction mediated by these kinases is a novel mechanism for the regulation of cell shape in mycobacteria, one that may be conserved among gram-positive bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , División Celular , Regulación Bacteriana de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Bacterianos , Datos de Secuencia Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Biblioteca de Péptidos , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Especificidad por Sustrato
19.
J Immunol ; 175(3): 1758-66, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16034117

RESUMEN

Mycobacterium tuberculosis remains a major pathogen of worldwide importance, which releases lipid Ags that are presented to human T cells during the course of tuberculosis infections. Here we report that cellular infection with live M. tuberculosis or exposure to mycobacterial cell wall products converted CD1- myeloid precursors into competent APCs that expressed group 1 CD1 proteins (CD1a, CD1b, and CD1c). The appearance of group 1 CD1 proteins at the surface of infected or activated cells occurred via transcriptional regulation, and new CD1 protein synthesis and was accompanied by down-regulation of CD1d transcripts and protein. Isolation of CD1-inducing factors from M. tuberculosis using normal phase chromatography, as well as the use of purified natural and synthetic compounds, showed that this process involved polar lipids that signaled through TLR-2, and we found that TLR-2 was necessary for the up-regulation of CD1 protein expression. Thus, mycobacterial cell wall lipids provide two distinct signals for the activation of lipid-reactive T cells: lipid Ags that activate T cell receptors and lipid adjuvants that activate APCs through TLR-2. These dual activation signals may represent a system for selectively promoting the presentation of exogenous foreign lipids by those myeloid APCs, which come into direct contact with pathogens.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos CD1/inmunología , Antígenos CD1/metabolismo , Glicoproteínas de Membrana/fisiología , Monocitos/inmunología , Monocitos/metabolismo , Mycobacterium tuberculosis/inmunología , Receptores de Superficie Celular/fisiología , Transducción de Señal/inmunología , Animales , Antígenos CD1/biosíntesis , Células CHO , Línea Celular , Pared Celular/química , Pared Celular/inmunología , Cricetinae , Galactanos/inmunología , Glicoproteínas , Humanos , Lipopolisacáridos/inmunología , Glicoproteínas de Membrana/agonistas , Mycobacterium tuberculosis/química , Oxazoles/inmunología , Peptidoglicano/inmunología , Biosíntesis de Proteínas/inmunología , Receptores de Superficie Celular/agonistas , Receptor Toll-Like 2 , Receptores Toll-Like
20.
Proc Natl Acad Sci U S A ; 102(24): 8674-9, 2005 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-15939884

RESUMEN

Many of the genes that comprise the vertebrate adaptive immune system are conserved across wide evolutionary time scales. Most notably, homologs of the mammalian MHC gene family have been found in virtually all jawed vertebrates, including sharks, bony fishes, reptiles, and birds. The CD1 family of antigen-presenting molecules are related to the MHC class I family but have evolved to bind and present lipid antigens to T cells. Here, we describe two highly divergent nonclassical MHC class I genes found in the chicken (Gallus gallus) that have sequence homology to the mammalian CD1 family of proteins. One of the chicken CD1 genes expresses a full-length transcript, whereas the other has multiple splice variants. Both Southern blot and single nucleotide polymorphism analysis indicates that chicken CD1 is relatively nonpolymorphic. Moreover, cross-hybridizing bands are present in other bird species, suggesting broad conservation in the avian class. Northern analysis of chicken tissue shows a high level of CD1 expression in the bursa and spleen. In addition, molecular modeling predicts that the potential antigen-binding pocket is probably hydrophobic, a universal characteristic of CD1 molecules. Genomic analysis indicates that the CD1 genes are located on chicken chromosome 16 and maps to within 200 kb of the chicken MHC B locus, suggesting that CD1 genes diverged from classical MHC genes while still linked to the major histocompatibility complex locus. The existence of CD1 genes in an avian species suggests that the origin of CD1 extends deep into the evolutionary history of terrestrial vertebrates.


Asunto(s)
Antígenos CD1/genética , Pollos/genética , Evolución Molecular , Genes MHC Clase I/genética , Familia de Multigenes/genética , Filogenia , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Bolsa de Fabricio/metabolismo , Mapeo Cromosómico , Análisis por Conglomerados , Secuencia Conservada/genética , Cartilla de ADN , Modelos Moleculares , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA