Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 114: 104668, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32335207

RESUMEN

The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a 'Blue Sky Workshop' on new ideas for non-animal approaches to predict repeated-dose systemic toxicity. The aim of the Workshop was to formulate strategic ideas to improve and increase the applicability, implementation and acceptance of modern non-animal methods to determine systemic toxicity. The Workshop concluded that good progress is being made to assess repeated dose toxicity without animals taking advantage of existing knowledge in toxicology, thresholds of toxicological concern, adverse outcome pathways and read-across workflows. These approaches can be supported by New Approach Methodologies (NAMs) utilising modern molecular technologies and computational methods. Recommendations from the Workshop were based around the needs for better chemical safety assessment: how to strengthen the evidence base for decision making; to develop, standardise and harmonise NAMs for human toxicity; and the improvement in the applicability and acceptance of novel techniques. "Disruptive thinking" is required to reconsider chemical legislation, validation of NAMs and the opportunities to move away from reliance on animal tests. Case study practices and data sharing, ensuring reproducibility of NAMs, were viewed as crucial to the improvement of non-animal test approaches for systemic toxicity.


Asunto(s)
Alternativas a las Pruebas en Animales , Pruebas de Toxicidad , Rutas de Resultados Adversos , Animales , Seguridad Química , Relación Dosis-Respuesta a Droga , Humanos
2.
Crit Rev Toxicol ; 45(3): 219-44, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25687245

RESUMEN

Abstract Over the last couple of decades, the awareness of the potential health impacts associated with early-life exposures has increased. Global regulatory approaches to chemical risk assessment are intended to be protective for the diverse human population including all life stages. However, questions persist as to whether the current testing approaches and risk assessment methodologies are adequately protective for infants and children. Here, we review physiological and developmental differences that may result in differential sensitivity associated with early-life exposures. It is clear that sensitivity to chemical exposures during early-life can be similar, higher, or lower than that of adults, and can change quickly within a short developmental timeframe. Moreover, age-related exposure differences provide an important consideration for overall susceptibility. Differential sensitivity associated with a life stage can reflect the toxicokinetic handling of a xenobiotic exposure, the toxicodynamic response, or both. Each of these is illustrated with chemical-specific examples. The adequacy of current testing protocols, proposed new tools, and risk assessment methods for systemic noncancer endpoints are reviewed in light of the potential for differential risk to infants and young children.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos , Niño , Cloranfenicol/toxicidad , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/análisis , Humanos , Sistema Inmunológico/efectos de los fármacos , Lactante , Plomo/toxicidad , Síndromes de Neurotoxicidad/etiología , Xenobióticos/toxicidad
3.
Birth Defects Res B Dev Reprod Toxicol ; 101(6): 423-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25475026

RESUMEN

Validation of alternative assays requires comparison of the responses to toxicants in the alternative assay with in vivo responses. Chemicals have been classified as "positive" or "negative" in vivo, despite the fact that developmental toxicity is conditional on magnitude of exposure. We developed a list of positive and negative developmental exposures, with exposure defined by toxicokinetic data, specifically maternal plasma Cmax . We selected a series of 20 chemicals that caused developmental toxicity and for which there were appropriate toxicokinetic data. Where possible, we used the same chemical for both positive and negative exposures, the positive being the Cmax at a dose level that produced significant teratogenicity or embryolethality, the negative being the Cmax at a dose level not causing developmental toxicity. It was not possible to find toxicokinetic data at the no-effect level for all positive compounds, and the negative exposure list contains Cmax values for some compounds that do not have developmental toxicity up to the highest dose level tested. This exposure-based reference list represents a fundamentally different approach to the evaluation of alternative tests and is proposed as a step toward application of alternative tests in quantitative risk assessment.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Teratogénesis/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad , Bioensayo , Ensayos Analíticos de Alto Rendimiento , Técnicas In Vitro , Medición de Riesgo
4.
Toxicol Sci ; 191(2): 343-356, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36583546

RESUMEN

The purpose of this study was to use chemical similarity evaluations, transcriptional profiling, in vitro toxicokinetic data, and physiologically based pharmacokinetic (PBPK) models to support read-across for a series of branched carboxylic acids using valproic acid (VPA), a known developmental toxicant, as a comparator. The chemicals included 2-propylpentanoic acid (VPA), 2-ethylbutanoic acid, 2-ethylhexanoic acid (EHA), 2-methylnonanoic acid, 2-hexyldecanoic acid, 2-propylnonanoic acid (PNA), dipentyl acetic acid or 2-pentylheptanoic acid, octanoic acid (a straight chain alkyl acid), and 2-ethylhexanol. Transcriptomics was evaluated in 4 cell types (A549, HepG2, MCF7, and iCell cardiomyocytes) 6 h after exposure to 3 concentrations of the compounds, using the L1000 platform. The transcriptional profiling data indicate that 2- or 3-carbon alkyl substituents at the alpha position of the carboxylic acid (EHA and PNA) elicit a transcriptional profile similar to the one elicited by VPA. The transcriptional profile is different for the other chemicals tested, which provides support for limiting read-across from VPA to much shorter and longer acids. Molecular docking models for histone deacetylases, the putative target of VPA, provide a possible mechanistic explanation for the activity cliff elucidated by transcriptomics. In vitro toxicokinetic data were utilized in a PBPK model to estimate internal dosimetry. The PBPK modeling data show that as the branched chain increases, predicted plasma Cmax decreases. This work demonstrates how transcriptomics and other mode of action-based methods can improve read-across.


Asunto(s)
Ácidos Carboxílicos , Transcriptoma , Ácidos Carboxílicos/toxicidad , Simulación del Acoplamiento Molecular , Ácido Valproico/toxicidad , Relación Estructura-Actividad
5.
Birth Defects Res B Dev Reprod Toxicol ; 95(4): 318-25, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22752971

RESUMEN

Previous research from our laboratory has determined the transcript profiles for developing fetal rat female and male reproductive tracts following transplacental exposure to estrogens. Prenatal exposure to bisphenol A (BPA) or 17-α-ethynyl estradiol (EE) significantly affects steroidogenic acute regulatory (StAR) protein transcript levels in the developing male rat reproductive tract. The purpose of this study was to establish the intratesticular distribution and temporal expression pattern of StAR, a key gene involved in steroidogenesis. Beginning on gestation day (GD) 11, pregnant Sprague-Dawley rats were exposed daily to 10µg/kg/day EE and fetal testes were harvested at GD16, 18, or 20. Quantitative reverse transcriptase PCR (QRT-PCR) demonstrated no significant difference in StAR transcript levels present at GD16. However, at GD18, StAR transcripts were significantly decreased following exposure. Immunohistochemistry demonstrated similar StAR protein levels in interstitial region of GD16 testes and an obvious decrease in StAR protein levels in the interstitial region of GD18 testes. Moreover, starting at GD11 additional dams were dosed with 0.001 or 0.1 µg/kg/day EE or 0.02, 0.5, 400 mg/kg/day BPA via subcutaneous injections. QRT-PCR validated previous microarray dose-related decreases in StAR transcripts at GD20, whereas immunohistochemistry results demonstrated decreases in StAR protein levels in the interstitial region at the highest EE and BPA doses only. Neither EE nor BPA exposure caused morphological changes in the developing seminiferous cords, Sertoli cells, gonocytes, or the interstitial region or Leydig cells at GD16-20. High levels of estrogens decrease StAR expression in the fetal rat testis during late gestation.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Compuestos de Bencidrilo/toxicidad , Estradiol/administración & dosificación , Estradiol/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Fenoles/administración & dosificación , Fenoles/toxicidad , Fosfoproteínas/metabolismo , Testículo/efectos de los fármacos , Animales , Femenino , Masculino , Exposición Materna , Intercambio Materno-Fetal , Fosfoproteínas/genética , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testículo/embriología , Testículo/metabolismo
6.
Front Toxicol ; 4: 1082222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618549

RESUMEN

The objective of this work was to use transcriptional profiling to assess the biological activity of structurally related chemicals to define their biological similarity and with that, substantiate the validity of a read-across approach usable in risk assessment. Two case studies are presented, one with 4 short alkyl chain parabens: methyl (MP), ethyl (EP), butyl (BP), and propylparaben (PP), as well as their main metabolite, p-hydroxybenzoic acid (pHBA) with the assumption that propylparaben was the target chemical; and a second one with caffeine and its main metabolites theophylline, theobromine and paraxanthine where CA was the target chemical. The comprehensive transcriptional response of MCF7, HepG2, A549 and ICell cardiomyocytes was evaluated (TempO-Seq) after exposure to vehicle-control, each paraben or pHBA, CA or its metabolites, at 3 non-cytotoxic concentrations, for 6 h. Differentially expressed genes (FDR ≥0.05, and fold change ±1.2≥) were identified for each chemical, at each concentration, and used to determine similarities. Each of the chemicals is able to elicit changes in the expression of a number of genes, as compared to controls. Importantly, the transcriptional profile elicited by each of the parabens shares a high degree of similarity across the group. The highest number of genes commonly affected was between butylparaben and PP. The transcriptional profile of the parabens is similar to the one elicited by estrogen receptor agonists, with BP being the closest structural and biological analogue for PP. In the CA case, the transcriptional profile elicited of all four methylxanthines had a high degree of similarity across the cell types, with CA and theophylline being the most active. The most robust response was obtained in the cardiomyocytes with the highest transcriptional profile similarity between CA and TP. The transcriptional profile of the methylxanthines is similar to the one elicited by inhibitors of phosphatidylinositol 3-kinase as well as other kinase inhibitors. Overall, our results support the approach of incorporating transcriptional profiling in well-designed in vitro tests as one robust stream of data to support biological similarity driven read-across procedures and strengthening the traditional structure-based approaches useful in risk assessment.

7.
Toxicol Sci ; 190(2): 227-241, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36161505

RESUMEN

Butylated hydroxytoluene (BHT) is a synthetic antioxidant widely used in many industrial sectors. BHT is a well-studied compound for which there are many favorable regulatory decisions. However, a recent opinion by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) hypothesizes a role for BHT in endocrine disruption (ANSES (2021). This opinion is based on observations in mostly rat studies where changes to thyroid physiology are observed. Enzymatic induction of Cytochrome P450-mediated thyroid hormone catabolism has been proposed as a mechanism for these observations, however, a causal relationship has not been proven. Other evidence proposed in the document includes a read across argument to butylated hydroxyanisole (BHA), another Community Rolling Action Plan (CoRAP)-listed substance with endocrine disruption concerns. We tested the hypothesis that BHT is an endocrine disruptor by using a Next Generation Risk Assessment (NGRA) method. Four different cell lines: A549, HCC1428, HepG2, and MCF7 were treated with BHT and a series of BHT analogs at 5 different concentrations, RNA was isolated from cell extracts and run on the L1000 gene array platform. A toxicogenomics-based assessment was performed by comparing BHT's unique genomic signature to a large external database containing signatures of other compounds (including many known endocrine disruptors) to identify if any endocrine disruption-related modes of action (MoAs) are prevalent among BHT and other compounds with similar genomic signatures. In addition, we performed a toxicogenomics-based structure activity relationship (SAR) assessment of BHT and a series of structurally similar analogs to understand if endocrine disruption is a relevant MoA for chemicals that are considered suitable analogs to BHT using the P&G read across framework (Wu et al., 2010). Neither BHT nor any of its analogs connected to compounds that had endocrine activity for estrogens, androgens, thyroid, or steroidogenesis.


Asunto(s)
Hidroxitolueno Butilado , Disruptores Endocrinos , Ratas , Animales , Hidroxitolueno Butilado/toxicidad , Hidroxianisol Butilado , Antioxidantes , Estrógenos , Disruptores Endocrinos/toxicidad
8.
Curr Res Toxicol ; 3: 100074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633891

RESUMEN

This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.

9.
Am J Med Genet C Semin Med Genet ; 157C(3): 183-7, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21766439

RESUMEN

Laboratory models have an important role in identifying exposures with teratogenic potential, determining mechanisms of abnormal development, and supporting or refuting the biological plausibility of associations identified in human studies. Laboratory animals are the most widely used models, but are rapidly being supplemented by in vitro tools. Testing paradigms that have been in place since the mid-1960s for pharmaceuticals, and soon thereafter for industrial chemicals and pesticides, have been used to evaluate the potential developmental toxicity of thousands of agents. These models have served as the principal basis for regulatory decisions about acceptable exposure levels and restrictions on use of certain drugs during pregnancy.


Asunto(s)
Discapacidades del Desarrollo/inducido químicamente , Modelos Animales , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Medición de Riesgo
10.
Birth Defects Res B Dev Reprod Toxicol ; 92(5): 413-20, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21770025

RESUMEN

The ILSI Health and Environmental Sciences Institute's Developmental and Reproductive Toxicology Technical Committee held a 2-day workshop entitled "Developmental Toxicology-New Directions" in April 2009. The fourth session of this workshop focused on new approaches and technologies for the assessment of developmental toxicology. This session provided an overview of the application of genomics technologies for developmental safety assessment, the use of mouse embryonic stem cells to capture data on developmental toxicity pathways, dynamical cell imaging of zebrafish embryos, the use of computation models of development pathways and systems, and finally, high-throughput in vitro approaches being utilized by the EPA ToxCast program. Issues discussed include the challenges of anchoring in vitro predictions to relevant in vivo endpoints and the need to validate pathway-based predictions with targeted studies in whole animals. Currently, there are 10,000 to 30,000 chemicals in world-wide commerce in need of hazard data for assessing potential health risks. The traditional animal study designs for assessing developmental toxicity cannot accommodate the evaluation of this large number of chemicals, requiring that alternative technologies be utilized. Though a daunting task, technologies are being developed and utilized to make that goal reachable.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Pruebas de Toxicidad/métodos , Animales , Relación Dosis-Respuesta a Droga , Células Madre Embrionarias/efectos de los fármacos , Humanos , Ratones , Medición de Riesgo , Seguridad , Transducción de Señal , Tecnología , Pez Cebra/embriología
11.
Toxicol Sci ; 180(2): 198-211, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33555348

RESUMEN

FutureTox IV, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2018. Building upon FutureTox I, II, and III, this conference focused on the latest science and technology for in vitro profiling and in silico modeling as it relates to predictive developmental and reproductive toxicity (DART). Publicly available high-throughput screening data sets are now available for broad in vitro profiling of bioactivities across large inventories of chemicals. Coupling this vast amount of mechanistic data with a deeper understanding of molecular embryology and post-natal development lays the groundwork for using new approach methodologies (NAMs) to evaluate chemical toxicity, drug efficacy, and safety assessment for embryo-fetal development. NAM is a term recently adopted in reference to any technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment to avoid the use of intact animals (U.S. Environmental Protection Agency [EPA], Strategic plan to promote the development and implementation of alternative test methods within the tsca program, 2018, https://www.epa.gov/sites/production/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf). There are challenges to implementing NAMs to evaluate chemicals for developmental toxicity compared with adult toxicity. This forum article reviews the 2018 workshop activities, highlighting challenges and opportunities for applying NAMs for adverse pregnancy outcomes (eg, preterm labor, malformations, low birth weight) as well as disorders manifesting postnatally (eg, neurodevelopmental impairment, breast cancer, cardiovascular disease, fertility). DART is an important concern for different regulatory statutes and test guidelines. Leveraging advancements in such approaches and the accompanying efficiencies to detecting potential hazards to human development are the unifying concepts toward implementing NAMs in DART testing. Although use of NAMs for higher level regulatory decision making is still on the horizon, the conference highlighted novel testing platforms and computational models that cover multiple levels of biological organization, with the unique temporal dynamics of embryonic development, and novel approaches for estimating toxicokinetic parameters essential in supporting in vitro to in vivo extrapolation.


Asunto(s)
Pruebas de Toxicidad , Toxicología , Animales , Niño , Simulación por Computador , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Embarazo , Medición de Riesgo , Estados Unidos , United States Environmental Protection Agency
12.
Birth Defects Res C Embryo Today ; 90(2): 110-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20544695

RESUMEN

Global analysis of gene expression in target cells or tissues in response to a toxicant holds significant promise for predictive toxicology. Toxicants elicit a characteristic pattern of gene expression that is dependent on mechanism of action. These mechanism-specific transcript profiles can be used as the basis for predictive toxicology. Potential applications include prioritizing chemicals for testing and customizing testing approaches based on the chemical. Results that are useful in this predictive context can be obtained from animal or in vitro models. Gene expression analysis can also be used to elucidate the shape of the dose-response curve at exposure levels below the no observed adverse effect level, an important need in risk assessment. In this review, we will illustrate each of these points using our research on estrogen and an estrogenic mode of action as a model for how to use gene expression data in a predictive way. Although gene expression in response to estrogens is tissue, life stage, and sex specific, it is feasible to identify transcript profiles that are diagnostic of this mode of action.


Asunto(s)
Toxicogenética , Animales , Estrógenos , Estudios de Factibilidad , Femenino , Expresión Génica , Sustancias Peligrosas , Humanos , Masculino , Perciformes , Ratas , Medición de Riesgo , Ovinos
14.
Birth Defects Res B Dev Reprod Toxicol ; 89(6): 526-30, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21086491

RESUMEN

BACKGROUND: There continue to be many efforts around the world to develop assays that are shorter than the traditional embryofetal developmental toxicity assay, or use fewer or no mammals, or use less compound, or have all three attributes. Each assay developer needs to test the putative assay against a set of performance standards, which traditionally has involved testing the assays against a list of compounds that are generally recognized as "positive" or "negative" in vivo. However, developmental toxicity is highly conditional, being particularly dependent on magnitude (i.e. dose) and timing of exposure, which makes it difficult to develop lists of compounds neatly assigned as developmental toxicants or not. APPROACH: Here we offer an alternative approach for the evaluation of developmental toxicity assays based on exposures. Exposures are classified as "positive" or "negative" in a system, depending on the compound and the internal concentration. Although this linkage to "internal dose" departs from the recent approaches to validation, it fits well with widely accepted principles of developmental toxicology. CONCLUSIONS: This paper introduces this concept, discusses some of the benefits and drawbacks of such an approach, and lays out the steps we propose to implement it for the evaluation of developmental toxicity assays.


Asunto(s)
Alternativas a las Pruebas en Animales , Desarrollo Embrionario/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Estudios de Validación como Asunto , Animales , Bioensayo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/efectos de los fármacos , Factores de Tiempo
15.
Food Chem Toxicol ; 144: 111539, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32645467

RESUMEN

As complex mixtures, botanicals present unique challenges when assessing safe use, particularly when endpoint gaps exist that cannot be fully resolved by existing toxicological literature. Here we explore in vitro gene expression as well receptor binding and enzyme activity as alternative assays to inform on developmental and reproductive toxicity (DART) relevant modes of action, since DART data gaps are common for botanicals. Specifically, botanicals suspected to have DART effects, in addition to those with a significant history of use, were tested in these assays. Gene expression changes in a number of different cell types were analysed using the connectivity mapping approach (CMap) to identify modes of action through a functional read across approach. Taken together with ligand affinity data obtained using a set of molecular targets customised towards known DART relevant modes of action, it was possible to inform DART risk using functional analogues, potency comparisons and a margin of internal exposure approach.


Asunto(s)
Suplementos Dietéticos/efectos adversos , Plantas/química , Reproducción/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad Subcrónica/métodos , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Medición de Riesgo
16.
Crit Rev Food Sci Nutr ; 49(8): 690-707, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19690995

RESUMEN

The existence of thresholds for toxicants is a matter of debate in chemical risk assessment and regulation. Current risk assessment methods are based on the assumption that, in the absence of sufficient data, carcinogenesis does not have a threshold, while noncarcinogenic endpoints are assumed to be thresholded. Advances in our fundamental understanding of the events that underlie toxicity are providing opportunities to address these assumptions about thresholds. A key events dose-response analytic framework was used to evaluate three aspects of toxicity. The first section illustrates how a fundamental understanding of the mode of action for the hepatic toxicity and the hepatocarcinogenicity of chloroform in rodents can replace the assumption of low-dose linearity. The second section describes how advances in our understanding of the molecular aspects of carcinogenesis allow us to consider the critical steps in genotoxic carcinogenesis in a key events framework. The third section deals with the case of endocrine disrupters, where the most significant question regarding thresholds is the possible additivity to an endogenous background of hormonal activity. Each of the examples suggests that current assumptions about thresholds can be refined. Understanding inter-individual variability in the events involved in toxicological effects may enable a true population threshold(s) to be identified.


Asunto(s)
Carcinógenos/farmacocinética , Carcinógenos/toxicidad , Contaminación de Alimentos , Algoritmos , Daño del ADN , Replicación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/farmacocinética , Disruptores Endocrinos/toxicidad , Salud Pública , Medición de Riesgo , Factores Socioeconómicos
17.
Toxicology ; 423: 84-94, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31125584

RESUMEN

We previously demonstrated that the Connectivity Map (CMap) (Lamb et al., 2006) concept can be successfully applied to a predictive toxicology paradigm to generate meaningful MoA-based connections between chemicals (De Abrew et al., 2016). Here we expand both the chemical and biological (cell lines) domain for the method and demonstrate two applications, both in the area of read across. In the first application we demonstrate CMap's utility as a tool for testing biological relevance of source chemicals (analogs) during a chemistry led read across exercise. In the second application we demonstrate how CMap can be used to identify functionally relevant source chemicals (analogs) for a structure of interest (SOI)/target chemical with minimal knowledge of chemical structure. Finally, we highlight four factors: promiscuity of chemical, dose, cell line and timepoint as having significant impact on the output. We discuss the biological relevance of these four factors and incorporate them into a work flow.


Asunto(s)
Sustancias Peligrosas/toxicidad , Medición de Riesgo/métodos , Alternativas a las Pruebas en Animales , Línea Celular , Bases de Datos Factuales , Sustancias Peligrosas/química , Humanos , Relación Estructura-Actividad , Transcriptoma/efectos de los fármacos
18.
Birth Defects Res B Dev Reprod Toxicol ; 83(2): 123-33, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18393383

RESUMEN

BACKGROUND: Parabens are widely used preservatives in cosmetics and pharmaceutical products, and approved as food additives. Parabens have been considered safe for these uses for many years. Recently, adverse effects on male reproductive parameters in rats have been reported when parabens were given orally for 8 weeks starting at three weeks of age. Our studies used two representative parabens, methyl- and butylparaben, to try to replicate these studies and thereby evaluate potential reproductive effects in male Wistar rats. METHODS: Diets containing 0, 100, 1000 or 10,000 ppm of either butyl- or methylparaben were fed to male rats for eight weeks. Rats were 22 days of age at the start of exposure. Parameters evaluated included organ weights, histopathology of reproductive tissues, sperm production, motility, morphology and reproductive hormone levels (butylparaben only). RESULTS: None of the parameters evaluated for either paraben showed compound- or dosage-dependent adverse effects. Metabolism experiments of butylparaben indicate that it is rapidly metabolized by non-specific esterases to p-hydroxybenzoic acid and butanol, neither of which is estrogenic. CONCLUSIONS: Exposure to methyl- or butylparaben in the diet for eight weeks did not affect any male reproductive organs or parameters at exposures as high as 10,000 ppm, corresponding to a mean daily dose of 1,141.1+/-58.9 or 1,087.6+/-67.8 mg/kg/day for methyl- and butylparaben, respectively. The rapid metabolism of parabens by esterases probably explains why these weakly estrogenic substances elicit no in vivo effects when administered by relevant exposure routes (i.e., topical and oral).


Asunto(s)
Genitales Masculinos/efectos de los fármacos , Parabenos/farmacología , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Genitales Masculinos/anatomía & histología , Genitales Masculinos/fisiología , Masculino , Tamaño de los Órganos/efectos de los fármacos , Parabenos/farmacocinética , Conservadores Farmacéuticos/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Piel/efectos de los fármacos , Piel/metabolismo
19.
Reprod Toxicol ; 78: 29-39, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29550350

RESUMEN

We evaluated the incidence of omphalocele, a malformation that occurs sporadically in many studies. We assembled data on external malformations using all treatment groups from every study published in three major journals over the past 35 years using New Zealand White rabbits. Fifty-eight papers were included: 4905 litters and 36,977 fetuses. Omphalocele was reported in 43% and was among the most common defects, occurring at a rate of 1.10% (litter) and 0.16% (fetus). The defect did not appear to be treatment-related, although it may have been in two studies, based on rate and dose-responsiveness. Removing these two studies from the analysis, the defect was still prevalent (0.77% litter, 0.11% fetal incidence). Three studies evaluated the effects of food restriction and omphalocele was observed with food restriction in two of them, suggesting that decreased maternal weight gain or food consumption may be causal. Otherwise, it appears to be spontaneous and common.


Asunto(s)
Anomalías Congénitas/etiología , Anomalías Congénitas/veterinaria , Hernia Umbilical/etiología , Hernia Umbilical/veterinaria , Animales , Ingestión de Alimentos , Femenino , Embarazo , Conejos , Pruebas de Toxicidad , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA