RESUMEN
Stroke represents the first cause of adult acquired disability. Spontaneous recovery, dependent on endogenous neurogenesis, allows for limited recovery in 50% of patients who remain functionally dependent despite physiotherapy. Here, we propose a review of novel drug therapies with strong potential in the clinic. We will also discuss new avenues of stem cell therapy in patients with a cerebral lesion. A promising future for the development of efficient drugs to enhance functional recovery after stroke seems evident. These drugs will have to prove their efficacy also in severely affected patients. The efficacy of stem cell engraftment has been demonstrated but will have to prove its potential in restoring tissue function for the massive brain lesions that are most debilitating. New answers may lay in biomaterials, a steadily growing field. Biomaterials should ideally resemble lesioned brain structures in architecture and must be proven to increase functional reconnections within host tissue before clinical testing.
Asunto(s)
Plasticidad Neuronal , Trasplante de Células Madre , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/terapia , Animales , Materiales Biocompatibles , Encéfalo/efectos de los fármacos , Encéfalo/patología , Humanos , Nanotecnología , Fármacos Neuroprotectores , Recuperación de la Función , Accidente Cerebrovascular/tratamiento farmacológicoRESUMEN
Ischemic stroke mostly affects the primary motor cortex and descending motor fibres, with consequent motor impairment. Pre-clinical models of stroke with reproducible and long-lasting sensorimotor deficits in higher-order animals are lacking. We describe a new method to induce focal brain damage targeting the motor cortex to study damage to the descending motor tracts in the non-human primate. Stereotaxic injection of malonate into the primary motor cortex produced a focal lesion in middle-aged marmosets (Callithrix jacchus). Assessment of sensorimotor function using a neurological scale and testing of forelimb dexterity and strength lasted a minimum of 12 weeks. Lesion evolution was followed by magnetic resonance imaging (MRI) at 24 h, 1 week, 4 and 12 weeks post-injury and before sacrifice for immunohistochemistry. Our model produced consistent lesions of the motor cortex, subcortical white matter and caudate nucleus. All animals displayed partial spontaneous recovery with long lasting motor deficits of force (54% loss) and dexterity (≈ 70% loss). Clearly visible T2 hypointensity in the white matter was observed with MRI and corresponded to areas of chronic gliosis in the internal capsule and lenticular fasciculus. We describe a straightforward procedure to reproducibly injure the motor cortex in the marmoset monkey, causing long-lasting motor deficits. The MRI signature reflects Wallerian degeneration and remote injury of corticospinal and corticopontine tracts, as well as subcortical motor loops. Our model may be suitable for the testing of therapies for post-stroke recovery, particularly in the chronic phase.
Asunto(s)
Modelos Animales de Enfermedad , Fuerza de la Mano/fisiología , Accidente Cerebrovascular Isquémico/inducido químicamente , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Malonatos/toxicidad , Animales , Callithrix , Femenino , Estudios de Seguimiento , Masculino , Malonatos/administración & dosificación , Reproducibilidad de los Resultados , Técnicas Estereotáxicas/normasRESUMEN
BACKGROUND: The adult brain is unable to regenerate itself sufficiently after large injuries. Therefore, hopes rely on therapies using neural stem cell or biomaterial transplantation to sustain brain reconstruction. The aim of the present study was to evaluate the improvement in sensorimotor recovery brought about by human primary adult neural stem cells (hNSCs) in combination with bio-implants. METHODS: hNSCs were pre-seeded on implants micropatterned for neurite guidance and inserted intracerebrally 2 weeks after a primary motor cortex lesion in rats. Long-term behaviour was significantly improved after hNSC implants versus cell engraftment in the grip strength test. MRI and immunohistological studies were conducted to elucidate the underlying mechanisms of neuro-implant integration. RESULTS: hNSC implants promoted tissue reconstruction and limited hemispheric atrophy and glial scar expansion. After 3 months, grafted hNSCs were detected on implants and expressed mature neuronal markers (NeuN, MAP2, SMI312). They also migrated over a short distance to the reconstructed tissues and to the peri-lesional tissues, where 26% integrated as mature neurons. Newly formed host neural progenitors (nestin, DCX) colonized the implants, notably in the presence of hNSCs, and participated in tissue reconstruction. The microstructured bio-implants sustained the guided maturation of both grafted hNSCs and endogenous progenitors. CONCLUSIONS: These immunohistological results are coherent with and could explain the late improvement observed in sensorimotor recovery. These findings provide novel insights into the regenerative potential of primary adult hNSCs combined with microstructured implants.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Regeneración/fisiología , Diferenciación Celular/fisiología , Proteína Doblecortina , Humanos , Ingeniería de TejidosRESUMEN
Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8 nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner.
Asunto(s)
Manganeso/farmacología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Tractos Piramidales/fisiología , Animales , Conducta Animal , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Callithrix , Cloruros/administración & dosificación , Cloruros/farmacología , Estudios de Factibilidad , Femenino , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/instrumentación , Masculino , Compuestos de Manganeso/administración & dosificación , Compuestos de Manganeso/farmacología , Tractos Piramidales/efectos de los fármacos , Estadística como AsuntoRESUMEN
The aim of this study was to set up (a) a large primary motor cortex (M1) lesion in rodent and (b) the conditions for evaluating a long-lasting motor deficit in order to propose a valid model to test neuronal replacement therapies aimed at improving motor deficit recovery. A mitochondrial toxin, malonate, was injected to induce extensive destruction of the forelimb M1 cortex. Three key motor functions that are usually evaluated following cerebral lesion in the clinic-strength, target reaching, and fine dexterity-were assessed in rats by 2 tests, a forelimb grip strength test and a skilled reaching task (staircase) for reaching and dexterity. The potential enhancement of postlesion recovery induced by a neuronal cell transplantation was then explored and confirmed by histological analyses. Both tests showed a severe functional impairment 2 days post lesion, however, reaching remained intact. Deficits in forelimb strength were long lasting (up to 3 months) but spontaneously recovered despite the extensive lesion size. This natural grip strength recovery could be enhanced by cell therapy. Histological analyses confirmed the presence of grafted cells 3 months postgraft and showed partial tissue reconstruction with some living neuronal cells in the graft. In contrast, fine dexterity never recovered in the staircase test even after grafting. These results suggest that cell replacement was only partially effective and that the forelimb M1 area may be a node of the sensorimotor network, where compensation from secondary pathways could account for strength recovery but recovery of forelimb fine dexterity requires extensive tissue reconstruction.