Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(6): 5100-5116, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38920978

RESUMEN

The biological activity of structural HIV-1 proteins is not limited to ensuring a productive viral infection but also interferes with cellular homeostasis through intra- and extracellular signaling activation. This interference induces genomic instability, increases the lifespan of the infected cell by inhibiting apoptosis, and subverts cell senescence, resulting in unrestricted cell proliferation. HIV structural proteins are present in a soluble form in the lymphoid tissues and blood of infected individuals, even without active viral replication. The HIV matrix protein p17, the envelope glycoprotein gp120, the transenvelope protein gp41, and the capsid protein p24 interact with immune cells and deregulate the biological activity of the immune system. The biological activity of HIV structural proteins is also demonstrated in endothelial cells and some tumor cell lines, confirming the ability of viral proteins to promote cell proliferation and cancer progression, even in the absence of active viral replication. This review corroborates the hypothesis that HIV structural proteins, by interacting with different cell types, contribute to creating a microenvironment that is favorable to the evolution of cancerous pathologies not classically related to AIDS.

2.
J Transl Med ; 21(1): 165, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864445

RESUMEN

BACKGROUND: Breast cancer is the second leading cause of death among women after lung cancer. Despite the improvement in prevention and in therapy, breast cancer still remains a threat, both for pre- and postmenopausal women, due to the development of drug resistance. To counteract that, novel agents regulating gene expression have been studied in both hematologic and solid tumors. The Histone Deacetylase (HDAC) inhibitor Valproic Acid (VA), used for epilepsy and other neuropsychiatric diseases, has been demonstrated a strong antitumoral and cytostatic activity. In this study, we tested the effects of Valproic Acid on the signaling pathways involved in breast cancer cells viability, apoptosis and in Reactive Oxygen Species (ROS) production using ER-α positive MCF-7 and triple negative MDA-MB-231 cells. METHODS: Cell proliferation assay was performed by MTT Cell cycle, ROS levels and apoptosis were analyzed by flow cytometry, protein levels were detected by Western Blotting. RESULTS: Cell treatment with Valproic Acid reduced cell proliferation and induced G0/G1 cell cycle arrest in MCF-7 and G2/M block in MDA-MB-231 cells. In addition, in both cells the drug enhanced the generation of ROS by the mitochondria. In MCF-7 treated cells, it has been observed a reduction in mitochondrial membrane potential, a down regulation of the anti-apoptotic marker Bcl-2 and an increase of Bax and Bad, leading to release of cytochrome C and PARP cleavage. Less consistent effects are recorded in MDA-MB-231 cells, in which the greater production of ROS, compared to MCF-7cells, involves an inflammatory response (activation of p-STAT3, increased levels of COX2). CONCLUSIONS: Our results have demonstrated that in MCF-7 cells the Valproic Acid is a suitable drug to arrest cell growth, to address apoptosis and mitochondrial perturbations, all factors that are important in determining cell fate and health. In a triple negative MDA-MB 231 cells, valproate directs the cells towards the inflammatory response with a sustained expression of antioxidant enzymes. Overall, the not always unequivocal data between the two cellular phenotypes indicate that further studies are needed to better define the use of the drug, also in combination with other chemotherapy, in the treatment of breast tumors.


Asunto(s)
Inhibidores de Histona Desacetilasas , Ácido Valproico , Femenino , Humanos , Ácido Valproico/farmacología , Células MCF-7 , Especies Reactivas de Oxígeno , Ciclo Celular , Proliferación Celular , Inhibidores de Histona Desacetilasas/farmacología
3.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675194

RESUMEN

Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Polifenoles/farmacología , Polifenoles/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Dieta , Apoptosis , Antioxidantes/farmacología
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003541

RESUMEN

Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.


Asunto(s)
Poncirus , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos , Poncirus/química , Puntos de Control del Ciclo Celular , Neoplasias de la Próstata/metabolismo , Apoptosis , Semillas/metabolismo , Línea Celular Tumoral , Extractos Vegetales/farmacología , Proliferación Celular , Ciclo Celular
5.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373242

RESUMEN

Glioblastoma multiforme (GBM) is one of the most aggressive types of cancer characterized by poor patient outcomes. To date, it is believed that the major cause of its recurrence and chemoresistance is represented by the enrichment of GBM stem cells (GSCs) sustained by the abnormal activation of a number of signaling pathways. In this study, we found that in GBM cells, treatment with low toxicity doses of the γ-secretase inhibitor RO4929097 (GSI), blocking the Notch pathway activity, in combination with resveratrol (RSV) was able to reverse the basal mesenchymal phenotype to an epithelial-like phenotype, affecting invasion and stemness interplay. The mechanism was dependent on cyclin D1 and cyclin-dependent kinase (CDK4), leading to a reduction of paxillin (Pxn) phosphorylation. Consequently, we discovered the reduced interaction of Pxn with vinculin (Vcl), which, during cell migration, transmits the intracellular forces to the extracellular matrix. The exogenous expression of a constitutively active Cdk4 mutant prevented the RSV + GSI inhibitory effects in GBM cell motility/invasion and augmented the expression of stemness-specific markers, as well as the neurosphere sizes/forming abilities in untreated cells. In conclusion, we propose that Cdk4 is an important regulator of GBM stem-like phenotypes and invasive capacity, highlighting how the combined treatment of Notch inhibitors and RSV could be prospectively implemented in the novel therapeutic strategies to target Cdk4 for these aggressive brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Resveratrol/uso terapéutico , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Transducción de Señal , Células Madre Neoplásicas/metabolismo , Proliferación Celular
6.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35682974

RESUMEN

Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.


Asunto(s)
Neoplasias de la Mama , Microambiente Tumoral , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Femenino , Humanos , Receptores Notch/metabolismo , Transducción de Señal
7.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163166

RESUMEN

It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERß complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.


Asunto(s)
Apoptosis , Neoplasias Hormono-Dependientes/patología , Receptores de Estrógenos/metabolismo , Animales , Humanos , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/metabolismo , Receptores de Estrógenos/genética , Transducción de Señal
8.
Hum Reprod ; 35(9): 2072-2085, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766764

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) acts as a ligand activated transcription factor and regulates processes, such as energy homeostasis, cell proliferation and differentiation. PPARγ binds to DNA as a heterodimer with retinoid X receptor and it is activated by polyunsaturated fatty acids and fatty acid derivatives, such as prostaglandins. In addition, the insulin-sensitizing thiazolidinediones, such as rosiglitazone, are potent and specific activators of PPARγ. PPARγ is present along the hypothalamic-pituitary-testis axis and in the testis, where low levels in Leydig cells and higher levels in Sertoli cells as well as in germ cells have been found. High amounts of PPARγ were reported in the normal epididymis and in the prostate, but the receptor was almost undetectable in the seminal vesicles. Interestingly, in the human and in pig, PPARγ protein is highly expressed in ejaculated spermatozoa, suggesting a possible role of PPARγ signaling in the regulation of sperm biology. This implies that both natural and synthetic PPARγ ligands may act directly on sperm improving its performance. Given the close link between energy balance and reproduction, activation of PPARγ may have promising metabolic implications in male reproductive functions. In this review, we first describe PPARγ expression in different compartments of the male reproductive axis. Subsequently, we discuss the role of PPARγ in both physiological and several pathological conditions related to the male fertility.


Asunto(s)
PPAR gamma , Tiazolidinedionas , Animales , Fertilidad , Masculino , Rosiglitazona , Porcinos , Factores de Transcripción
9.
BMC Cancer ; 19(1): 1038, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684907

RESUMEN

BACKGROUND: Androgens, through their own receptor, play a protective role on breast tumor development and progression and counterbalance estrogen-dependent growth stimuli which are intimately linked to breast carcinogenesis. METHODS: Cell counting by trypan blu exclusion was used to study androgen effect on estrogen-dependent breast tumor growth. Quantitative Real Time RT-PCR, western blotting, transient transfection, protein immunoprecipitation and chromatin immunoprecipitation assays were carried out to investigate how androgen treatment and/or androgen receptor overexpression influences the functional interaction between the steroid receptor coactivator AIB1 and the estrogen- or androgen receptor which, in turn affects the estrogen-induced cyclin D1 gene expression in MCF-7 breast cancer cells. Data were analyzed by ANOVA. RESULTS: Here we demonstrated, in estrogen receptor α (ERα)-positive breast cancer cells, an androgen-dependent mechanism through which ligand-activated androgen receptor (AR) decreases estradiol-induced cyclin D1 protein, mRNA and gene promoter activity. These effects involve the competition between AR and ERα for the interaction with the steroid receptor coactivator AIB1, a limiting factor in the functional coupling of the ERα with the cyclin D1 promoter. Indeed, AIB1 overexpression is able to reverse the down-regulatory effects exerted by AR on ERα-mediated induction of cyclin D1 promoter activity. Co-immunoprecipitation studies indicated that the preferential interaction of AIB1 with ERα or AR depends on the intracellular expression levels of the two steroid receptors. In addition, ChIP analysis evidenced that androgen administration decreased E2-induced recruitment of AIB1 on the AP-1 site containing region of the cyclin D1 gene promoter. CONCLUSIONS: Taken together all these data support the hypothesis that AIB1 sequestration by AR may be an effective mechanism to explain the reduction of estrogen-induced cyclin D1 gene activity. In estrogen-dependent breast cancer cell proliferation, these findings reinforce the possibility that targeting AR signalling may potentiate the effectiveness of anti-estrogen adjuvant therapies.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ciclina D1/genética , Receptor alfa de Estrógeno/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Receptores Androgénicos/metabolismo , Ciclina D1/metabolismo , Estradiol/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Coactivador 3 de Receptor Nuclear/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , Transducción de Señal , Factor de Transcripción AP-1/genética
10.
Arch Virol ; 164(6): 1655-1660, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30941585

RESUMEN

Grapevine Pinot gris disease (GPGD) has been associated with a trichovirus, namely grapevine Pinot gris virus (GPGV), although the virus has been reported in both symptomatic and asymptomatic plants. Despite the puzzling aetiology of the disease and potentially important role of GPGV, the number of fully sequenced isolates is still rather limited. With the aim of increasing the knowledge on intraspecific diversity and evolution, nine GPGV isolates were collected from different vineyards in the Friuli Venezia Giulia region (Northeast Italy), cloned, sequenced, and subjected to robust phylogenetic and other analyses. The results provided hints on the evolutionary history of the virus, the occurrence of recombination, and the presence of clade-specific SNPs in sites of putative protein modifications with potential impact on the interaction with the host.


Asunto(s)
Flexiviridae/genética , Enfermedades de las Plantas/virología , Análisis de Secuencia de ARN/métodos , Vitis/virología , Clonación Molecular , Evolución Molecular , Flexiviridae/clasificación , Flexiviridae/aislamiento & purificación , Genoma Viral , Italia , Filogenia
11.
Int J Mol Sci ; 20(5)2019 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-30832393

RESUMEN

Extensive research over the past 25 years in hormone-dependent cancers, such as breast cancer and prostate cancer, has identified the molecular mechanisms driven by steroid receptors, elucidating the interplay between genomic and non-genomic steroid receptors mechanism of action. Altogether, these mechanisms create the specific gene expression programs that contribute to endocrine therapy resistance and cancer progression. These findings, on the bidirectional molecular crosstalk between steroid and growth factor receptors pathways in endocrine resistance, suggest the use of multi-target inhibitors together with endocrine therapies, for treating resistant disease. In this review we will discuss the novel understanding on the chemopreventive and anti-cancer activities of Resveratrol (3,5,4'-trihydroxy-stilbene) (RSV), a phytoalexin found in grapes acting on a plethora of targets. We will highlight Resveratrol effect on steroid receptors signalling and its potential use in the treatment of hormone-dependent cancer. Understanding the molecular mechanisms by which the bioactive compound influences cancer cell behaviour, by interfering with steroid receptors functional activity, will help to advance the design of combination strategies to increase the rate of complete and durable clinical response in patients.


Asunto(s)
Anticarcinógenos/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Receptores de Esteroides/metabolismo , Resveratrol/farmacología , Animales , Anticarcinógenos/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/prevención & control , Femenino , Humanos , Masculino , Neoplasias de la Próstata/prevención & control , Resveratrol/uso terapéutico , Transducción de Señal/efectos de los fármacos
12.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893846

RESUMEN

Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.


Asunto(s)
Resveratrol/administración & dosificación , Resveratrol/farmacología , Administración Oral , Animales , Disponibilidad Biológica , Halógenos/química , Humanos , Liposomas , Resveratrol/química , Resveratrol/farmacocinética
13.
J Cell Physiol ; 233(11): 8467-8476, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29904910

RESUMEN

A successful aging could be gained by life satisfaction, social functioning, or psychological resources and, definitely, by increasing resistance to diverse age-related pathologies. Nowadays, cancer can be considered an age-related disease since the incidence of most cancers increases with age, rising more rapidly beginning in midlife. Although adults with extended longevity are less likely to develop cancer, it is now emerging that aging and cancer share common molecular links, and thus targeting these mechanisms may be suitable to treat multiple disorders, for the prolonging of healthy aging. At present, one of the cornerstones of antiaging is hormone-replacement therapy to treat diseases associated with a state of age-related sex-hormone deficiency in women and men; however, many studies question the relationship of hormone replacement to cancer recurrence. Here, we discuss signaling and metabolic molecular crossroad linking aging and cancer. This is useful to argue about the current knowledge of prolongevity and druggable targets and to motivate specific intervention strategies that could modify practices of the aging population, activating multiple longevity pathways but keeping track of cancer pathways, thereby potentially preserving health status.


Asunto(s)
Envejecimiento/genética , Hormonas Esteroides Gonadales/genética , Redes y Vías Metabólicas/genética , Neoplasias/genética , Envejecimiento/patología , Metabolismo Energético/genética , Femenino , Hormonas Esteroides Gonadales/deficiencia , Humanos , Longevidad/genética , Masculino , Neoplasias/patología
14.
Tumour Biol ; 39(5): 1010428317701642, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28459202

RESUMEN

Human testis, gonocytes, and adult germ cells mainly express estrogen receptor beta, and estrogen receptor beta loss is associated with advanced tumor stage; however, the molecular mechanisms of estrogen receptor beta-protective effects are still to be defined. Herein, we provide evidence that in human seminoma TCam-2 cells, E2 through estrogen receptor beta upregulates the mitochondrial deacetylase sirtuin-3 at protein and messenger RNA levels. Specifically, E2 increases sirtuin-3 expression through a transcriptional mechanism due to the occupancy of sirtuin-3 promoter by estrogen receptor beta, together with the transcription factor Sp1 as evidenced by Chip reChIp assay. This complex binds to a GC cluster located between -128 bp/+1 bp and is fundamental for E2 effects, as demonstrated by Sp1 small interfering RNA studies. Beside, after 24 h, E2 stimulus significantly increased activities of superoxide dismutase and catalase to scavenge reactive oxygen species produced by 30 min of E2 stimulus. In summary, this article indicates a novel functional interplay between estrogen receptor beta and sirtuin-3 counteracting reactive oxygen species production in TCam-2 cells. Our findings thus show that an important tumor-suppressive pathway through estrogen receptor beta is target of E2, actually proposing a distinctive protecting action against seminoma. Future studies may lead to additional strategies for the current therapy of seminoma.


Asunto(s)
Estradiol/administración & dosificación , Receptor beta de Estrógeno/genética , Seminoma/tratamiento farmacológico , Sirtuina 3/genética , Sitios de Unión , Línea Celular Tumoral , Estradiol/metabolismo , Receptor beta de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Regiones Promotoras Genéticas/genética , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Seminoma/genética , Seminoma/metabolismo , Seminoma/patología , Sirtuina 3/metabolismo , Factor de Transcripción Sp1/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
15.
Biochim Biophys Acta ; 1850(11): 2185-95, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26272430

RESUMEN

BACKGROUND: The omega-3 docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may form conjugates with amines that have potential health benefits against common diseases including cancers. Here we synthesized DHA-dopamine (DHADA) and EPA-dopamine (EPADA) conjugates and studied their biological effects on different breast cancer cell lines. METHODS AND RESULTS: MTT assays indicated that increasing concentrations of DHADA and EPADA significantly affected viability in MCF-7, SKBR3 and MDA-MB-231 breast cancer cells, whereas no effect was observed in MCF-10A non-tumorigenic epithelial breast cells. DHADA and EPADA enhanced Beclin-1 expression, as evidenced by immunoblotting, real-time-PCR and functional analyses. Chromatin Immunoprecipitation (ChIP) and Re-ChIP assays revealed that both compounds induced recruitment of Peroxisome-Proliferator-Activated-Receptor gamma (PPARγ) and RNA Polymerase-II at the Retinoic-X-Receptor binding region on Beclin-1 promoter. Moreover, both compounds enhanced autophagosome formation, evaluated by LC-3 and monodansylcadaverine labeling, that was prevented by the PPARγ antagonist GW9662, addressing the direct involvement of PPARγ. Noteworthy, long-term treatment with DHADA and EPADA caused the blockade of autophagic flux followed by apoptotic cell death as evidenced by PARP cleavage and DNA fragmentation in all breast cancer cells. CONCLUSIONS: We have provided new insights into the molecular mechanism through which PPARγ, as a central molecule in the cross talk between autophagy and apoptosis, mediates DHADA- and EPADA-induced cell death in breast cancer cells. GENERAL SIGNIFICANCE: Our findings suggest that omega-3 DHADA- and EPADA activation of PPARγ may assume biological relevance in setting novel adjuvant therapeutic interventions in breast carcinoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Dopamina/farmacología , Ácido Eicosapentaenoico/farmacología , PPAR gamma/fisiología , Proteínas Reguladoras de la Apoptosis/genética , Beclina-1 , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas
16.
FASEB J ; 29(5): 2150-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25657113

RESUMEN

Obesity is a risk factor for breast cancer, largely due to altered expression of various adipocytokines. As it concerns adiponectin, there are not univocal results regarding its role in breast cancer occurrence and progression. Here, we demonstrate that in animals injected with human estrogen receptor (ER)-α-negative MDA-MB-231 cells pretreated with adiponectin (1 and 5 µg/ml), a significant reduction (60 and 40%, respectively) in tumor volume is observed, whereas an increased tumor growth (54 and 109%, respectively) is evidenced in the animals receiving human ER-α-positive MCF-7 cells. Moreover, cyclin D1 (CD1) mRNA and protein levels are decreased in MDA-MB-231 cells, whereas they are up-regulated in ER-α-positive cells by adiponectin. These findings fit with the opposite effects of adiponectin on CD1 promoter: 0.44- and 0.34-fold decrease in MDA-MB-231 cells and 0.63- and 0.95-fold increase in MCF-7 cells, treated with 1 and 5 µg/ml, respectively. Functional studies indicate that these effects are mediated by the specific protein 1 motif located in the CD1 promoter. In the absence of ER-α, the adiponectin-mediated down-regulation of CD1 involves the recruitment of corepressors. In the presence of ER-α, the adiponectin-induced expression of CD1 requires the involvement of an activator complex. In conclusion, we propose that a possible mechanism through which adiponectin differently affects breast cancer growth is the opposite modulation of CD1 levels accordingly to ER-α expression.


Asunto(s)
Adiponectina/farmacología , Neoplasias de la Mama/metabolismo , Ciclina D1/metabolismo , Receptor alfa de Estrógeno/metabolismo , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Inmunoprecipitación de Cromatina , Ciclina D1/genética , Ensayo de Cambio de Movilidad Electroforética , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Mutagénesis Sitio-Dirigida , Mutación/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Células Tumorales Cultivadas
17.
Int J Mol Sci ; 17(9)2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27649143

RESUMEN

Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans.


Asunto(s)
Antioxidantes/farmacocinética , Quinasa 2 de Adhesión Focal/genética , Próstata/efectos de los fármacos , Próstata/metabolismo , Estilbenos/farmacología , Autofagia , Línea Celular , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Quinasa 2 de Adhesión Focal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Mutación , Estrés Oxidativo/efectos de los fármacos , Próstata/citología , Resveratrol
18.
Mol Cancer ; 14: 130, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148846

RESUMEN

BACKGROUND: Bergapten (5-methoxypsoralen), a natural psoralen derivative present in many fruits and vegetables, has shown antitumoral effects in a variety of cell types. In this study, it has been addressed how Bergapten in breast cancer cells induces autophagic process. RESULTS: In MCF7 and ZR-75 breast cancer cells Bergapten exhibited anti-survival response by inducing the autophagic process increasing Beclin1, PI3KIII, UVRAG, AMBRA expression and conversion of LC3-I to LC3-II. LC3-GFP, Acridine orange assay and transmission electron microscopy even confirmed the increased autophagosome formations in treated cells. Bergapten-induced autophagy is dependent by PTEN up-regulation, since silencing this gene, the induction of Beclin1 and the p-AKT/p-mTOR signal down-regulation were reversed. PTEN is transcriptionally regulated by Bergapten through the involvement of p38MAPK/NF-Y, as evidenced by the use of p38MAPK inhibitor SB203580, site-direct mutagenesis of NF-Y element and NF-Y siRNA. Furthermore NF-Y knockdown prevented Bergapten-induced acid vesicular organelle accumulations (AVOs), strengthening the role of this element in mediating autophagy. CONCLUSIONS: Our data indicate PTEN as a key target of Bergapten action in breast cancer cells for the induction of autophagy. These findings add further details on the mechanism of action of Bergapten, therefore suggesting that phytochemical compounds may be implemented in the novel strategies for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Metoxaleno/análogos & derivados , Fosfohidrolasa PTEN/genética , 5-Metoxipsoraleno , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino , Expresión Génica , Genes Reporteros , Humanos , Células MCF-7 , Metoxaleno/farmacología , Fenotipo , Regiones Promotoras Genéticas , Regulación hacia Arriba
19.
Histochem Cell Biol ; 144(1): 67-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25850410

RESUMEN

The most common cause of male infertility is the testicular varicocele, a condition that impairs production and decreases quality of sperm. Male fertility also strictly depends on androgens acting through their own receptor. The enzyme 5α-reductase (SRD5A) is involved in the conversion of testosterone to 5α-dihydrotestosterone, both required for the development and maintenance of male reproductive function. Here, we evaluated, by western blotting analysis, the presence of SRD5A in human ejaculated spermatozoa and evidenced differences in sperm SRD5A content between healthy donors and varicocele-affected patients. Additionally, SRD5A sperm ultrastructural localization was also assessed by transmission electron microscopy and immunogold assay. We evidenced that SRD5A enzyme is present in the human spermatozoa and that its cellular content is lowered in sperm samples from varicocele patients compared to healthy subjects. The presence of SRD5A in human ejaculated spermatozoa highlights the potential role of this enzyme in sperm physiopathology suggesting that the decrease in its content, by affecting the conversion of testosterone into 5α-dihydrotestosterone, may be an important additional mechanism involved in the harmful effect of varicocele in male fertility.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Infertilidad/etiología , Proteínas de la Membrana/metabolismo , Espermatozoides/enzimología , Varicocele/enzimología , Adulto , Humanos , Inmunohistoquímica , Masculino , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Espermatozoides/fisiología , Espermatozoides/ultraestructura , Testosterona/metabolismo , Varicocele/fisiopatología
20.
J Anat ; 227(4): 541-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26241668

RESUMEN

In the last decade, the study of human sperm anatomy, at molecular level, has revealed the presence of several nuclear protein receptors. In this work, we examined the expression profile and the ultrastructural localization of liver receptor homolog-1 (LRH-1) in human spermatozoa. We evidenced the presence of the receptor by Western blotting and real time-RT-PCR. Furthermore, we used immunogold electron microscopy to investigate the sperm anatomical regions containing LRH-1. The receptor was mainly located in the sperm head, whereas its expression was reduced in the neck and across the tail. Interestingly, we observed the presence of LRH-1 in different stages of testicular germ cell development by immunohistochemistry. In somatic cells, it has been suggested that the LRH-1 pathway is tightly linked with estrogen signaling and the important role of estradiol has been widely studied in sperm cells. To assess the significance of LRH-1 in male gametes and to deepen understanding of the role of estrogens in these cells, we investigated important sperm features such as motility, survival and capacitation. Spermatozoa were treated with 10 nm estradiol and the inhibition of LRH-1 reversed the estradiol stimulatory action. From our data, we discovered that human spermatozoa can be considered a new site of expression for LRH-1, evidencing its role in sperm motility, survival and cholesterol efflux. Furthermore, we may presume that in spermatozoa the LRH-1 effects are closely integrated with the estrogen signaling, supporting LRH-1 as a downstream effector of the estradiol pathway on some sperm functions.


Asunto(s)
Estrógenos/metabolismo , Regulación de la Expresión Génica , ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , Espermatozoides/metabolismo , Western Blotting , Diferenciación Celular , Supervivencia Celular , Humanos , Inmunohistoquímica , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Citoplasmáticos y Nucleares/biosíntesis , Transducción de Señal , Motilidad Espermática , Espermatozoides/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA