Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 277: 116371, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663196

RESUMEN

Nicotine, a naturally occurring alkaloid found in tobacco, is a potent neurotoxin extensively used to control Nilaparvata lugens (Stål), a destructive insect pest of rice crops. The insect gut harbors a wide array of resident microorganisms that profoundly influence several biological processes, including host immunity. Maintaining an optimal gut microbiota and immune homeostasis requires a complex network of reciprocal regulatory interactions. However, the underlying molecular mechanisms driving these symbiotic exchanges, particularly between specific gut microbe and immunity, remain largely unknown in insects. Our previous investigations identified and isolated a nicotine-degrading Burkholderia cepacia strain (BsNLG8) with antifungal properties. Building on those findings, we found that nicotine intake significantly increased the abundance of a symbiotic bacteria BsNLG8, induced a stronger bacteriostatic effect in hemolymph, and enhanced the nicotine tolerance of N. lugens. Additionally, nicotine-induced antimicrobial peptides (AMPs) exhibited significant antibacterial effects against Staphylococcus aureus. We adopted RNA-seq to explore the underlying immunological mechanisms in nicotine-stressed N. lugens. Bioinformatic analyses identified numerous differentially expressed immune genes, including recognition/immune activation (GRPs and Toll) and AMPs (i.e., Defensin, Lugensin, lysozyme). Temporal expression profiling (12, 24, and 48 hours) of immune genes revealed pattern recognition proteins and immune effectors as primary responders to nicotine-induced stress. Defensin A, a broad-spectrum immunomodulatory cationic peptide, exhibited significantly high expression. RNA interference-mediated silencing of Defensin A reduced the survival, enhanced nicotine sensitivity of N. lugens to nicotine, and decreased the abundance of BsNLG8. The reintroduction of BsNLG8 improved the expression of immune genes, aiding nicotine resistance of N. lugens. Our findings indicate a potential reciprocal immunomodulatory interaction between Defensin A and BsNLG8 under nicotine stress. Moreover, this study offers novel and valuable insights for future research into enhancing nicotine-based pest management programs and developing alternative biocontrol methods involving the implication of insect symbionts.


Asunto(s)
Burkholderia cepacia , Microbioma Gastrointestinal , Hemípteros , Nicotina , Animales , Nicotina/toxicidad , Nicotina/farmacología , Hemípteros/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Burkholderia cepacia/efectos de los fármacos , Defensinas/genética , Estrés Fisiológico/efectos de los fármacos , Simbiosis
2.
Ecotoxicol Environ Saf ; 264: 115383, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634480

RESUMEN

Bacterial symbionts exhibiting co-evolutionary patterns with insect hosts play a vital role in the nutrient synthesis, metabolism, development, reproduction, and immunity of insects. The brown planthopper (BPH) has a strong ability to adapt to various environmental stresses and can develop resistance to broad-spectrum insecticides. We aimed to investigate whether gut symbionts of BPH play a major role in the detoxification of insecticides and host fitness in unfavorable environments. Nicotine-treated rice plants were exposed to BPH (early stage) and the gut microbiome of the emerging female adults were analyzed using high throughput sequencing (HTS). Nicotine administration altered the diversity and community structure of BPH symbionts with significant increases in bacterial members such as Microbacteriaceae, Comamondaceae, Enterobacteriaceae, and these changes may be associated with host survival strategies in adverse environments. Furthermore, the in-vitro study showed that four intestinal bacterial strains of BPH (Enterobacter NLB1, Bacillus cereus NL1, Ralstonia NLG26, and Delftia NLG11) could degrade nicotine when grown in a nicotine-containing medium, with the highest degradation (71%) observed in Delftia NLG11. RT-qPCR and ELISA analysis revealed an increased expression level of CYP6AY1 and P450 enzyme activities in Delftia NLG11, respectively. CYP6AY1 increased by 20% under the action of Delftia and nicotine, while P450 enzyme activity increased by 18.1%. After CYP6AY1 interference, nicotine tolerance decreased, and the mortality rate reached 76.65% on the first day and 100% on the third day. Moreover, Delftia NLG11 helped axenic BPHs to increase their survival rate when fed nicotine in the liquid-diet sac (LDS) feeding system. Compared with axenic BPHs, the survival rate improved by 25.11% on day 2% and 6.67% on day 3. These results revealed an altered gut microbiota and a cooperative relationship between Delftia NLG11 and CYP6AY1 in nicotine-treated BPH, suggesting that insects can adapt to a hostile environment by interacting with their symbionts and providing a new idea for integrated pest management strategies.


Asunto(s)
Delfines , Hemípteros , Insecticidas , Microbiota , Oryza , Animales , Nicotina/farmacología , Nicotina/metabolismo , Hemípteros/metabolismo , Insecticidas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Oryza/química
3.
Genomics ; 114(4): 110381, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533967

RESUMEN

Diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae) is considered one of the most destructive worldwide agricultural pests and has developed various defence mechanisms to fight against the available pesticides. Understanding the host-defence system of P. xylostella is vital for developing biocontrol-based pest management strategies. Although there are several studies on P. xylostella, little is known about the changes in the immune system during the larva-to-adult metamorphosis. RNA-seq and iTRAQ investigations of P. xylostella from 2-day-old fourth instar larvae (L4D2), pupa (P0), and adult (A0) were done to understand these alterations at a molecular level. A total of 412/ 584 up-regulated and 1430/ 757 down-regulated genes/proteins between larva and pupa, 813/ 589 up-regulated and 1206/ 846 down-regulated genes/proteins between pupa and adult were identified. It was shown that the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) expression were up-regulated during the pupation and emergence of metamorphosis. The pathway enrichment analysis demonstrated that DEGs and DEPs were mainly associated with the energy generation and metabolism and innate immunity of the insect. The expression of immune-related and developmental-related genes were significantly different during the developmental process of P. xylostella. Moreover, the expression of four focused genes, i.e., serine proteinase inhibitor (Serpin-15), prophenoloxidase activating proteinase 1 (PAP-1) and 3a (PAP-3a), Gram-negative bacteria-binding protein (GNBP-6), was different in developmental stages and after Bacillus thuringiensis HD73 and Metarhizium anisopliae infection. The phenoloxidase (PO) activity in plasma was also significantly up-regulated during the pathogen infection. Recombinant proteins PAP-1, PAP-3a, GNBP-6 could significantly trigger the PO activity in vitro, Serpin-15 could suppress the PO activity. Taken together, these results indicate that Serpin-15, PAP-1, PAP-3a, and GNBP-6 might have the potential for co-regulation of immunity and development in P. xylostella. In conclusion, this study provided the immune system dynamics in the developmental process of P. xylostella and identified four candidate genes that can serve as potential targets for pest control strategies.


Asunto(s)
Mariposas Nocturnas , Serpinas , Animales , Sistema Inmunológico , Larva/genética , Proteómica , Pupa , Serpinas/genética , Serpinas/metabolismo , Transcriptoma
4.
Genomics ; 112(1): 304-311, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30818063

RESUMEN

Genetic changes in Hypoxanthine guanine phosphoribosyltransferace (HPRT1) gene can alter the expression of the dopamine neurotransmitter leads to abnormal neuron function, a disease called Lesch-Nyhan syndrome (LNS). Although different studies were conducted on LNS, information on codon usage bias (CUB) of HPRT1 gene is limited. The present study examines the genetic determinants of CUB in HPRT1 gene using twelve mammalian species. In the coding sequence of HPRT1 genes, A/T ending codons was most frequently used. A higher ENC value was observed indicating lower HPRT1 gene expression in the selected mammalian species. Correlation analysis indicates that compositional constraints under mutation pressure can involve in CUB of HPRT1 genes among the selected mammalian species. Relative synonymous codon usage (RSCU) value revealed that the codons such as ACT, AGG, ATT and AGC were over-represented in each of the mammalian species. Result from the analysis of the RSCU indicates that compositional constraint is a key driver for the variation in codon usage. Ratio of nonsynonymous (dN) and synonymous (dS) substitution further suggested that purifying selection occurs among the HPRT1 gene of studied mammals to maintain its protein function under the process of evolution. Our findings report an insight into the codon usage patterns of HPRT1 gene and will be useful for LNS management.


Asunto(s)
Uso de Codones , Hipoxantina Fosforribosiltransferasa/genética , Secuencia de Aminoácidos , Animales , Composición de Base , Bovinos , Codón , ADN/química , Expresión Génica , Humanos , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/metabolismo , Mamíferos/genética , Filogenia , Ratas , Selección Genética , Alineación de Secuencia
5.
J Food Sci Technol ; 58(8): 3235-3242, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34294986

RESUMEN

Tannase is a widely used enzyme that improves the quality of tea by facilitating the release of water-soluble polyphenolic compounds, as well as reduces the formation of tea creams. The microbial tannase enzymes are often employed for tea biotransformation by hydrolyses esters of phenolic acids, including the gallated polyphenols found in blacks teas. The study was focused to investigate the tannase enzyme mediated biotransformation of black tea such as CTC-(Crush, tear, curl) & Kangra orthodox which are commonly used by the south Indian peoples. HPLC spectral analysis revealed that tannase treatment on tea cream formation (CTC & Kangra orthodox tea) allows the hydrolysis of the EGC, GA, ECG, and EGCG. A significant reduction in the formation of tea cream and increased antioxidant activity has been observed in the CTC (1.62 fold) and Kangra orthodox (1.55 fold). The results revealed that tannase treatment helps to improve the quality of black tea infusions with respect to cream formation, the intensity of colour, and sensory characteristics of tea. The result of this study indicates that E. cloacae 41 produced tannase can be used to improve the quality of both tea samples.

6.
Microb Pathog ; 137: 103675, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31473248

RESUMEN

Bats are highly diverse and ecologically important mammals. They harbor various bacteria, viruses, and fungal communities that are either beneficial or potentially pathogenic. Extensive metagenomic studies in bats are limited, particularly for the gut, and to date, there are no reports on the bacterial diversity of Rhinolophus monoceros from Meghalaya, India. There are limited studies on the isolation of potential harmful or beneficial bacteria and their interactions with the environment through culture-dependent approaches. Therefore, high-throughput screening was used to understand the population structure, genetic diversity, and ecological role of the microorganisms. High-throughput sequencing of the 16S rRNA marker for gene mapping showed that the gut samples constitute a diverse group of bacteria that is dominated by Proteobacteria, followed by Firmicutes. The bacterial genera Corynebacterium and Mycobacterium were also observed in the Illumina dataset. Illumina sequencing revealed eight bacterial phyla composed of 112 genera. The metagenomic analysis of the OTUs from the gut revealed diverse bacterial communities as well as zoonotic and human pathogens. There were differences in the bacterial communities between the two methods used in this study, which could be related to host specificity, diet, and habitat. The culture-dependent technique resulted in the isolation of 35 bacterial isolates, of which Bacillus cereus and B. anthracis are well-known bacterial pathogens that show virulent traits including hemolytic and proteolytic activities. Pseudomonas stutzeri is an opportunistic human pathogen that was also isolated and showed similar traits. Antibiotic sensitivity tests were performed on all 35 isolates, and different antibiotics were used for Gram-positive and -negative bacteria. The result showed that some isolates are resistant to antibiotics such as penicillin G and Cefoxitin. This report on gut bacterial communities could attract interest in the possibility of isolating and characterizing bacteria for the production of antibiotics, enzymes, plant growth promoters, and probiotics. However, the presence of potential pathogenic bacteria that may impose health hazards cannot be ignored and needs to be studied further.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Quirópteros/microbiología , Microbioma Gastrointestinal , Metagenoma , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Mapeo Cromosómico , ADN Bacteriano/aislamiento & purificación , Heces/microbiología , Microbioma Gastrointestinal/genética , Variación Genética , Ensayos Analíticos de Alto Rendimiento , Humanos , India , Pruebas de Sensibilidad Microbiana , Micobioma , ARN Ribosómico 16S/genética , Zoonosis/microbiología
7.
Arch Insect Biochem Physiol ; 102(3): e21556, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31050038

RESUMEN

Serine protease inhibitors (serpins), evolutionary old, structurally conserved molecules, are a superfamily of proteins found in almost all living organisms. Serpins are relatively large, typically 350-500 amino acids in length, with three ß-sheets and seven to nine α-helices folding into a conserved tertiary structure with a reactive center loop. Serpins perform various physiological functions in insects, including development, digestion, host-pathogen interactions, and innate immune response. In insects, the innate immune system is characterized as the first and major defense system against the invasion of microorganisms. Serine protease cascades play a critical role in the initiation of innate immune responses, such as melanization and the production of antimicrobial peptides, and are strictly and precisely regulated by serpins. Herein, we provide a microreview on the role of serpins in the insect-host-pathogen interactions, emphasizing their role in immune responses, particularly in diamondback moth (Plutella xylostella), highlighting the important discoveries and also the gaps that remain to be explored in future studies.


Asunto(s)
Interacciones Huésped-Patógeno , Insectos/microbiología , Serpinas/inmunología , Animales , Bacterias , Hongos , Inmunidad Innata , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Insectos/inmunología , Melaninas/metabolismo , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/microbiología , Serpinas/química , Serpinas/metabolismo
9.
Environ Monit Assess ; 191(12): 778, 2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784843

RESUMEN

The discharge of solid and liquid waste from domestic, municipal, and hospital premises pollutes the soil and river ecosystems. However, the diversity and functions of the microbial communities present in these polluted environments are not well understood and may contain harmful microbial communities with specialized metabolic potential. In this present study, we adapted the Illumina sequencing technology to analyze microbial communities and their metabolic capabilities in polluted environments. A total of 1113884 sequences of v3-v4 hypervariable region of the 16S rRNA were obtained using Illumina sequencing and assigned to the corresponding taxonomical ranks using Greengenes databases. Proteobacteria and Bacteroidetes were dominantly present in all the four studied sites (solid waste dumping site (SWD); Chite river site (CHR), Turial river site (TUR), and Tuikual river site (TUKR)). It was found that the SWD was dominated by Firmicutes, Actinobacteria; CHR by Acidobacteria, Verrucomicrobia, Planctomycetes; TUR by Verrucomicrobia, Acidobacteria; and TUKR by Verrucomicrobia and Firmicutes, respectively. The dominant bacterial genus present in all samples was Acinetobacter, Flavobacterium, Prevotella, Corynebacterium, Comamonas, Bacteroides, Wautersiella, Cloacibacterium, Stenotrophomonas, Sphingobacterium, and Pseudomonas. Twenty-seven putative bacterial pathogens were identified from the contaminated sites belonging to Salmonella enterica, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Functional analysis showed a high representation of genes in the KEGG pathway involved in the metabolism of amino acids and carbohydrates and identified several genes associated with antibiotic resistance and xenobiotic degradation in these environments, which can be a serious problem for human health and environment. The results from this research will provide a new understanding of the possible management practices to minimize the spread of pathogenic microorganisms in the environment.


Asunto(s)
Bacterias , Microbiología Ambiental , Microbiota , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Monitoreo del Ambiente , Metagenoma , Microbiota/genética , ARN Ribosómico 16S/genética , Ríos/química , Ríos/microbiología , Instalaciones de Eliminación de Residuos
10.
J Food Sci Technol ; 55(5): 1870-1879, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29666540

RESUMEN

Utonga-kupsu, Hentak and Ngari are traditional fermented fish products produced by the Manipuri people living in the North-Eastern part of India. The present study was designed with the aim to isolate, identify and characterize the microorganisms present in these fermented foods. Bacterial pure cultures were isolated using serially diluted samples and were further identified by conventional biochemical tests and Sanger sequencing of 16s rRNA gene. Results show that the number of bacterial count in Nutrient agar and Starch casein agar was 14-20 and 10-16 CFU/g, respectively. A total of 46 morphologically different bacterial strains were identified and assigned under the phylum Firmicutes. Identified bacterial strains belonged to the genus Bacillus and Staphylococcus and majority of the isolates were Bacillus subtilis and Staphylococcus nepalensis. Bacterial isolate HNS60 isolated from Hentak and identified as Bacillus subtilis was shown to possess high antimicrobial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Most of the identified bacteria were shown to possess DPPH radical scavenging as well as phosphatase, amylase, protease and cellulose activities. The isolate HNS60 contain high antimicrobial, enzymatic and probiotics activity which might responsible for the possible health benefits of the fermented foods. Utonga-kupsu, Hentak and Ngari thus can be further exploited as a potential source of probiotics and natural antioxidants.

11.
BMC Microbiol ; 17(1): 90, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28399822

RESUMEN

BACKGROUND: Bacteria present in cave often survive by modifying their metabolic pathway or other mechanism. Understanding these adopted bacteria and their survival strategy inside the cave is an important aspect of microbial ecology. Present study focuses on the bacterial community and geochemistry in five caves of Mizoram, Northeast India. The objective of this study was to explore the taxonomic composition and presumed functional diversity of cave sediment metagenomes using paired end Illumina sequencing using V3 region of 16S rRNA gene and bioinformatics pipeline. RESULTS: Actinobacteria, Proteobacteria, Verrucomicrobia and Acidobacteria were the major phyla in all the five cave sediment samples. Among the five caves the highest diversity is found in Lamsialpuk with a Shannon index 12.5 and the lowest in Bukpuk (Shannon index 8.22). In addition, imputed metagenomic approach was used to predict the functional role of microbial community in biogeochemical cycling in the cave environments. Functional module showed high representation of genes involved in Amino Acid Metabolism in (20.9%) and Carbohydrate Metabolism (20.4%) in the KEGG pathways. Genes responsible for carbon degradation, carbon fixation, methane metabolism, nitrification, nitrate reduction and ammonia assimilation were also predicted in the present study. CONCLUSION: The cave sediments of the biodiversity hotspot region possessing a oligotrophic environment harbours high phylogenetic diversity dominated by Actinobacteria and Proteobacteria. Among the geochemical factors, ferric oxide was correlated with increased microbial diversity. In-silico analysis detected genes involved in carbon, nitrogen, methane metabolism and complex metabolic pathways responsible for the survival of the bacterial community in nutrient limited cave environments. Present study with Paired end Illumina sequencing along with bioinformatics analysis revealed the essential ecological role of the cave bacterial communities. These results will be useful in documenting the biospeleology of this region and systematic understanding of bacterial communities in natural sediment environments as well.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Ciclo del Carbono/fisiología , Cuevas/microbiología , Ciclo del Nitrógeno/fisiología , Filogenia , Aminoácidos/metabolismo , Amoníaco/metabolismo , Bacterias/genética , Secuencia de Bases , Biodiversidad , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Clasificación , ADN Bacteriano , Ecología , Compuestos Férricos/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , India , Redes y Vías Metabólicas/fisiología , Metagenoma , Metagenómica , Nitratos/metabolismo , Nitrificación , Nitrógeno/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia , Microbiología del Suelo , Sobrevida
12.
Ann Clin Microbiol Antimicrob ; 16(1): 49, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28693504

RESUMEN

BACKGROUND: Diarrheagenic Escherichia coli are associated with infantile diarrhea in the developing countries. The present study was conducted to determine the occurrence and antimicrobial resistance pattern of enteropathogenic and enteroinvasive E. coli associated with diarrhoea among the paediatric patients. METHODS: A total of 262 stool samples were collected from children with and without diarrhea from Mizoram, Northeast India. E. coli were isolated and subjected to multiplex PCR to detect virulent genes of EPEC (eaeA and bfpA) and EIEC (ial). Isolates were subjected to antimicrobial sensitivity assay using disc diffusion method. Selected eaeA genes were sequenced for identification and genetic relationship. RESULTS: A total of 334 E. coli was isolated, of which 17.37% were carrying at least one virulent gene. Altogether, 14.97 and 2.40% isolates were categorized as EPEC and EIEC, respectively. Among the DEC isolates, 4.79% were EPEC and 7.78% were EIEC. A total of 8 (2.40%) isolates were EIEC (ial+), of which 6 (1.80%) and 2 (0.60%) were from diarrhoeic and non-diarrhoeic patients, respectively. A total of 24 (41.40%) DEC isolates were MDR (resistance against ≥5 antimicrobials). CONCLUSIONS: A high frequency of EPEC pathotypes associated with paediatric diarrhea was observed in Mizoram, Northeast India and majority of the isolates are resistant to antibiotics with a high frequency of MDR, which is a matter of concern to the public health. This also raises an alarm to the world communities to monitor the resistance pattern and analyse in a global scale to combat the problems of resistance development.


Asunto(s)
Diarrea/microbiología , Escherichia coli Enteropatógena/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Escherichia coli/aislamiento & purificación , Antibacterianos/farmacología , Preescolar , Escherichia coli Enteropatógena/clasificación , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/genética , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Heces/microbiología , Femenino , Humanos , India , Lactante , Masculino , Reacción en Cadena de la Polimerasa Multiplex
13.
Plants (Basel) ; 12(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37836221

RESUMEN

The phyllosphere refers to the aboveground surface of plants colonized by diverse microorganisms. Microbes inhabiting this environment play an important role in enhancing the host's genomic and metabolic capabilities, including defense against pathogens. Compared to the large volume of studies on rhizosphere microbiome for plant health and defense, our understanding of phyllosphere microbiome remains in its infancy. In this review, we aim to explore the mechanisms that govern the phyllosphere assembly and their function in host defence, as well as highlight the knowledge gaps. These efforts will help develop strategies to harness the phyllosphere microbiome toward sustainable crop production.

14.
Mycobiology ; 50(5): 259-268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36404902

RESUMEN

The nuclear import of proteins is a fundamental process in the eukaryotes including plant. It has become evident that such basic process is exploited by nuclear effectors that contain nuclear localization signal (NLS) and are secreted into host cells by fungal pathogens of plants. However, only a handful of nuclear effectors have been known and characterized to date. Here, we first summarize the types of NLSs and prediction tools available, and then delineate examples of fungal nuclear effectors and their roles in pathogenesis. Based on the knowledge on NLSs and what has been gleaned from the known nuclear effectors, we point out the gaps in our understanding of fungal nuclear effectors that need to be filled in the future researches.

15.
Biology (Basel) ; 11(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358303

RESUMEN

The fall armyworm (Spodoptera frugiperda, J.E. Smith) is one of the most important agricultural pests in the world and causes serious damage to many significant crops. Insect gut microbiota plays a vital role in host immunity, digestion, and development, helping the higher organism colonize in a new environment. However, the effects of different diets on midgut microbial composition and host immunity in S. frugiperda remain unclear. So far, no reports have compared the gut microbiota of fall armyworm reared using an artificial diet compared to corn leaf in Guangzhou, China. High-throughput 16S rRNA sequencing technology was applied to gain insight into the composition of the gut microbiota of S. frugiperda feeding on corn leaf (field diet) and on a starch-rich artificial diet (lab diet). The fall armyworm gut microbiota was dominated by the bacterial phyla Firmicutes and Proteobacteria. Despite the difference in diet, the core bacterial community was represented by the genus Enterococcus. However, the bacterial community is dominated by a few phylotypes, namely operational taxonomical units 1 (OTU1) (Enterococcus casseliflavus), OTU3 (Enterobacteriaceae), OTU2 (Weissella), and OTU4 (Clostridium), accounting for 97.43% of the total OTUs in the complete dataset. A significant difference was identified in the bacterial communities between the "lab diet" and the "field diet" groups. OTU1 and OTU2 were significantly higher in the "field diet" group, whereas OTU3 and OTU4 were higher in the "lab diet" group. A phylogenetic investigation of the communities by reconstruction of unobserved states (PICRUSt) predicted functional analysis indicates the presence of several genes associated with plant biomass degradation. Importantly, antibiotic-mediated perturbation of the midgut microbial community significantly impacts the expression profile of the important immune genes of the host. Furthermore, the oral reintroduction of gut bacterial isolates (E. mundtii and E. gallinarum) significantly enhances host resistance to AcMNPV infection. Taken together, our results indicate that diet composition is an important driver in shaping insect gut microbiome and immune gene expression, ultimately playing an important role in the pest defense system.

16.
Front Microbiol ; 12: 555022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335484

RESUMEN

The rapid emergence of multidrug resistant microorganisms has become one of the most critical threats to public health. A decrease in the effectiveness of available antibiotics has led to the failure of infection control, resulting in a high risk of death. Among several alternatives, antimicrobial peptides (AMPs) serve as potential alternatives to antibiotics to resolve the emergence and spread of multidrug-resistant pathogens. These small proteins exhibit potent antimicrobial activity and are also an essential component of the immune system. Although several AMPs have been reported and characterized, studies associated with their potential medical applications are limited. This review highlights the novel sources of AMPs with high antimicrobial activities, including the entomopathogenic nematode/bacterium (EPN/EPB) symbiotic complex. Additionally, the AMPs derived from insects, nematodes, and marine organisms and the design of peptidomimetic antimicrobial agents that can complement the defects of therapeutic peptides have been used as a template.

17.
Environ Pollut ; 271: 116271, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33401210

RESUMEN

Insect gut microbiotas have a variety of physiological functions for host growth, development, and immunity. Bacillus thuringiensis (Bt) is known to kill insect pests by releasing insecticidal protoxins, which are activated in the insect midgut. However, the interplay among Bt infection, host immunity, and gut microbiota are still unclear. Here we show that Bt Cry1Ac protoxin interacts with the gut microbiota to accelerate the mortality of P. xylostella larvae. Cry1Ac protoxin was found to cause a dynamic change in the midgut and hemocoel microbiota of P. xylostella, with a significant increase in bacterial load and a significant reduction in bacterial diversity. In turn, loss of gut microbiota significantly decreased the Bt susceptibility of P. xylostella larvae. The introduction of three gut bacterial isolates Enterococcus mundtii (PxG1), Carnobacterium maltaromaticum (PxCG2), and Acinetobacter guillouiae (PxCG3) restored sensitivity to Bt Cry1Ac protoxin. We also found that Cry1Ac protoxin and native gut microbiota can trigger host midgut immune response, which involves the up-regulation of expression of Toll and IMD pathway genes and most antimicrobial peptide genes, respectively. Our findings further shed light on the interplay between insect gut microbiota and host immunity under the Bt toxin killing pressure, and this may provide insights for improving the management of Bt resistance and lead to new strategies for biological control of insect pests.


Asunto(s)
Bacillus thuringiensis , Microbioma Gastrointestinal , Mariposas Nocturnas , Acinetobacter , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Carnobacterium , Endotoxinas/toxicidad , Enterococcus , Proteínas Hemolisinas , Inmunidad , Proteínas de Insectos , Resistencia a los Insecticidas , Larva
18.
Toxins (Basel) ; 12(8)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806491

RESUMEN

Bacillus thuringiensis (Bt) is an important cosmopolitan bacterial entomopathogen, which produces various protein toxins that have been expressed in transgenic crops. The evolved molecular interaction between the insect immune system and gut microbiota is changed during the Bt infection process. The host immune response, such as the expression of induced antimicrobial peptides (AMPs), the melanization response, and the production of reactive oxygen species (ROS), varies with different doses of Bt infection. Moreover, B. thuringiensis infection changes the abundance and structural composition of the intestinal bacteria community. The activated immune response, together with dysbiosis of the gut microbiota, also has an important effect on Bt pathogenicity and insect resistance to Bt. In this review, we attempt to clarify this tripartite interaction of host immunity, Bt infection, and gut microbiota, especially the important role of key immune regulators and symbiotic bacteria in the Bt killing activity. Increasing the effectiveness of biocontrol agents by interfering with insect resistance and controlling symbiotic bacteria can be important steps for the successful application of microbial biopesticides.


Asunto(s)
Bacillus thuringiensis/inmunología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Microbioma Gastrointestinal , Inmunidad , Insectos/inmunología , Animales , Bacillus thuringiensis/patogenicidad , Agentes de Control Biológico/farmacología , Disbiosis , Interacciones Microbiota-Huesped , Interacciones Microbianas , Proteínas Citotóxicas Formadoras de Poros/inmunología
19.
Front Physiol ; 11: 442, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457652

RESUMEN

Entomopathogenic bacteria Serratia marcescens is widely used as an environmentally friendly biocontrol agent against various pests, including Spodoptera exigua. Understanding the immune defense mechanism of S. exigua through comparative proteomic analysis can identify the key proteins expressed in response to the microbial infection. Here, we employed the as isobaric tags for relative and absolute quantification (iTRAQ) technique to investigate the effects of S. marcescens on the proteomic expression of S. exigua. Based on the molecular functional analysis, the differentially expressed proteins (DEPs) were mainly involved in the binding process and catalytic activities. Further bioinformatics analysis revealed important DEPs that played a crucial role in innate immunity of S. exigua with recognition (C-type lectin), melanization (propanol oxidase 3, serine protease, Serine-type carboxypeptidase activity, clip domain serine protease 4), antimicrobial activity (lysozyme, lysozyme-like, gloverin, cecropin B), detoxification (acetyl-CoA C-acetyltransferase, 3-dehydroecdysone 3-alpha-reductase, glucuronosyltransferase, glutathione S-transferase) and others. The Quantitative real-time PCR (qRT-PCR) results further indicated the significant upregulation of the immune-related genes in Spodoptera exigua following S. marcescens infection. To the best of our knowledge, this is the first iTRAQ based study to characterize S. marcescens mediated proteomic changes in S. exigua and identified important immune-related DEPs. The results of this study will provide an essential resource for understanding the host-pathogen interactions and the development of novel microbial biopesticides against various pests.

20.
Front Microbiol ; 11: 566325, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193155

RESUMEN

Pathogenic microorganisms and their chronic pathogenicity are significant concerns in biomedical research. Biofilm-linked persistent infections are not easy to treat due to resident multidrug-resistant microbes. Low efficiency of various treatments and in vivo toxicity of available antibiotics drive the researchers toward the discovery of many effective natural anti-biofilm agents. Natural extracts and natural product-based anti-biofilm agents are more efficient than the chemically synthesized counterparts with lesser side effects. The present review primarily focuses on various natural anti-biofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes along with their sources, mechanism of action via interfering in the quorum-sensing pathways, disruption of extracellular polymeric substance, adhesion mechanism, and their inhibitory concentrations existing in literature so far. This study provides a better understanding that a particular natural anti-biofilm molecule exhibits a different mode of actions and biofilm inhibitory activity against more than one pathogenic species. This information can be exploited further to improve the therapeutic strategy by a combination of more than one natural anti-biofilm compounds from diverse sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA