Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1767(9): 1157-63, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17706937

RESUMEN

The NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration. We have expressed the Saccharomyces cerevisiae NDI1 gene, which encodes a single subunit NADH dehydrogenase, in a strain of Caenorhabditis elegans with an impaired complex I. Expression of Ndi1p produces marked improvements in animal fitness and reproduction, increases respiration rates and restores mitochondrial membrane potential to wild type levels. Ndi1p functionally integrates into the nematode respiratory chain and mitigates the deleterious effects of a complex I deficit. However, we have also shown that Ndi1p cannot substitute for the absence of complex I. Nevertheless, the yeast Ndi1p should be considered as a candidate for gene therapy in human diseases involving complex I.


Asunto(s)
Potencial de la Membrana Mitocondrial , Enfermedades Mitocondriales/metabolismo , NADH Deshidrogenasa/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Complejo I de Transporte de Electrón , Regulación de la Expresión Génica , Potenciales de la Membrana , Modelos Biológicos , NADH Deshidrogenasa/química , Estrés Oxidativo , Consumo de Oxígeno , Fenotipo , Plásmidos/metabolismo , Proteínas de Saccharomyces cerevisiae/química
2.
Mech Ageing Dev ; 130(7): 461-5, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19442682

RESUMEN

Energy production via oxidative phosphorylation generates a mitochondrial membrane potential (DeltaPsi(m)) across the inner membrane. In this work, we show that a lower DeltaPsi(m) is associated with increased lifespan in Caenorhabditis elegans. The long-lived mutants daf-2(e1370), age-1(hx546), clk-1(qm30), isp-1(qm150) and eat-2(ad465) all have a lower DeltaPsi(m) than wild type animals. The lower DeltaPsi(m) of daf-2(e1370) is daf-16 dependent, indicating that the insulin-like signaling pathway not only regulates lifespan but also mitochondrial energetics. RNA interference (RNAi) against 17 genes shown to extend lifespan also decrease DeltaPsi(m). Furthermore, lifespan can be significantly extended with the uncoupler carbonylcyanide-3-chlorophenylhydrazone (CCCP), which dissipates DeltaPsi(m). We conclude that longevity pathways converge on the mitochondria and lead to a decreased DeltaPsi(m). Our results are consistent with the 'uncoupling to survive' hypothesis, which states that dissipation of the DeltaPsi(m) will extend lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidad/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Longevidad/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Desacopladores/farmacología
3.
Biochem Biophys Res Commun ; 354(3): 814-9, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17266929

RESUMEN

The mitochondrial respiratory chain plays a crucial role in cellular and organismal health. In addition to being the major source of energy for most cells, mitochondrial respiratory chain function regulates or modulates redox and metabolite homeostasis, apoptosis and the generation of reactive oxygen species. In order to measure the relative in vivo mitochondrial membrane potential of different strains of the nematode, Caenorhabditis elegans, we have developed a fluorescence assay using the cationic, lipophilic carbocyanine dye, diS-C(3)(3). We demonstrate that two complex I-deficient mutants have significantly lower mitochondrial membrane potentials in vivo than wild type animals. Our fluorescence assay will enable us to better dissect and understand the complex phenotypic consequences of mitochondrial dysfunction.


Asunto(s)
Caenorhabditis elegans/fisiología , Carbocianinas/farmacología , Membrana Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Animales , Apoptosis/fisiología , Membrana Celular/fisiología , Transporte de Electrón , Colorantes Fluorescentes , Homeostasis/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Oxidación-Reducción , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA