Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Alzheimers Dement ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032157

RESUMEN

INTRODUCTION: The immune receptor triggering receptor expressed on myeloid cells 2 (TREM2) is among the strongest genetic risk factors for Alzheimer's disease (AD) and is a therapeutic target. TREM2 multimers have been identified in crystallography and implicated in the efficacy of antibody therapeutics; however, the molecular basis for TREM2 multimerization remains poorly understood. METHODS: We used molecular dynamics simulations and binding energy analysis to determine the effects of AD-associated variants on TREM2 multimerization and validated with experimental results. RESULTS: TREM2 trimers remained stably bound, driven primarily by salt bridge between residues D87 and R76 at the interface of TREM2 units. This salt bridge was disrupted by the AD-associated variants R47H and R98W and nearly ablated by the D87N variant. This decreased binding among TREM2 multimers was validated with co-immunoprecipitation assays. DISCUSSION: This study uncovers a molecular basis for TREM2 forming stable trimers and unveils a novel mechanism by which TREM2 variants may increase AD risk by disrupting TREM2 oligomerization to impair TREM2 normal function. HIGHLIGHTS: Triggering receptor expressed on myeloid cells 2 (TREM2) multimerization could regulate TREM2 activation and function. D87-R76 salt bridges at the interface of TREM2 units drive the formation of stable TREM2 dimers and trimers. Alzheimer's disease (AD)-associated R47H and R98W variants disrupt the D87-R76 salt bridge. The AD-associated D87N variant leads to complete loss of the D87-R76 salt bridge.

2.
Alzheimers Dement ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33090700

RESUMEN

INTRODUCTION: Triggering receptor expressed on myeloid cells-2 (TREM2) is an immune receptor expressed on microglia that also can become soluble (sTREM2). How TREM2 engages different ligands remains poorly understood. METHODS: We used comprehensive biolayer interferometry (BLI) analysis to investigate TREM2 and sTREM2 interactions with apolipoprotein E (apoE) and monomeric amyloid beta (Aß) (mAß42). RESULTS: TREM2 engagement of apoE was protein mediated with little effect of lipidation, showing slight affinity differences between isoforms (E4 > E3 > E2). Another family member, TREML2, did not bind apoE. Disease-linked TREM2 variants within a "basic patch" minimally impact apoE binding. Instead, TREM2 uses a unique hydrophobic surface to bind apoE, which requires the apoE hinge region. TREM2 and sTREM2 directly bind mAß42 and potently inhibit Aß42 polymerization, suggesting a potential role for soluble sTREM2 in preventing AD pathogenesis. DISCUSSION: These findings demonstrate that TREM2 has at least two ligand-binding surfaces that might be therapeutic targets and uncovers a potential function for sTREM2 in directly inhibiting Aß polymerization.

3.
Neurotherapeutics ; 21(1): e00291, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241154

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia and lacks highly effective treatments. Tau-based therapies hold promise. Tau reduction prevents amyloid-ß-induced dysfunction in preclinical models of AD and also prevents amyloid-ß-independent dysfunction in diverse disease models, especially those with network hyperexcitability, suggesting that strategies exploiting the mechanisms underlying Tau reduction may extend beyond AD. Tau binds several SH3 domain-containing proteins implicated in AD via its central proline-rich domain. We previously used a peptide inhibitor to demonstrate that blocking Tau interactions with SH3 domain-containing proteins ameliorates amyloid-ß-induced dysfunction. Here, we identify a top hit from high-throughput screening for small molecules that inhibit Tau-FynSH3 interactions and describe its optimization with medicinal chemistry. The resulting lead compound is a potent cell-permeable Tau-SH3 interaction inhibitor that binds Tau and prevents amyloid-ß-induced dysfunction, including network hyperexcitability. These data support the potential of using small molecule Tau-SH3 interaction inhibitors as a novel therapeutic approach to AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ensayos Analíticos de Alto Rendimiento
4.
Front Neurol ; 10: 1252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32021611

RESUMEN

Single nucleotide variations in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) have been linked to both late-onset Alzheimer's disease and behavioral variant frontotemporal dementia (FTD), the latter presenting either in isolation or with cystic bone lesions in a condition called Nasu-Hakola disease. Models of the extracellular domain of TREM2 show that Nasu-Hakola disease-associated mutations are grossly inactivating by truncation, frameshift, or unfolding, that Alzheimer's disease (AD)-associated variants localize to a putative ligand-interacting region (PLIR) on the extracellular surface, and that FTD-associated variants are found in the hydrophobic core. However, while these disease-associated residues are predicted to play some role in disrupting ligand binding to the extracellular domain of TREM2, how they ultimately lead to disease remains unknown. Here, we used in silico molecular modeling to investigate all-atom models of TREM2 and characterize the effects on conformation and dynamical motion of AD-associated R47H and R62H as well as FTD-associated T96K, D86V, and T66M variants compared to the benign N68K variant and the common variant. Our model, which is based on a published 2.2 Å resolution crystal structure of the TREM2 extracellular domain, finds that both AD- and FTD-associated variants cause localized instability in three loops adjacent to the PLIR that correspond to the complementarity-determining regions (CDRs) of antibodies. This instability ultimately disrupts tethering between these CDRs and the core of the immunoglobulin domain, exposing a group of otherwise-buried, negatively charged residues. This instability and exposure of negatively charged residues is most severe following introduction of the T66M variant that has been described as causing FTD even in the heterozygous state and is less severe following introduction of variants that are less strongly tied to FTD or of those associated with AD. Thus, our results provide further evidence that the proposed loss-of-function caused by neurodegenerative disease-associated variants may be driven by altered conformational stability of the ligand-interacting CDR and, ultimately, loss of affinity or specificity for TREM2 ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA