Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37796451

RESUMEN

Pre-term birth is associated with physiological sequelae that persist into adulthood. In particular, modulated ventilatory responsiveness to hypoxia and hypercapnia has been observed in this population. Whether pre-term birth per se causes these effects remains unclear. Therefore, we aimed to assess pulmonary ventilation and blood gases under various environmental conditions, comparing 17 healthy prematurely born individuals (mean ± SD; gestational age, 28 ± 2 weeks; age, 21 ± 4 years; peak oxygen uptake, 48.1 ± 11.2 ml kg-1  min-1 ) with 16 well-matched adults born at term (gestational age, 40 ± 1 weeks; age, 22 ± 2 years; peak oxygen uptake, 51.2 ± 7.7 ml kg-1  min-1 ). Participants were exposed to seven combinations of hypoxia/hypobaria (equivalent to ∼3375 m) and/or hypercapnia (3% CO2 ), at rest for 6 min. Pulmonary ventilation, pulse oxygen saturation and the arterial partial pressures of O2 and CO2 were similar in pre-term and full-term individuals under all conditions. Higher ventilation in hypoxia compared to normoxia was only observed at terrestrial altitude, despite an equivalent (normobaric) hypoxic stimulus administered at sea level (0.138 F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Assessment of oscillations in key variables revealed that combined hypoxic hypercapnia induced greater underlying fluctuations in ventilation in pre-term individuals only. In general, higher pulse oxygen saturation fluctuations were observed with hypoxia, and lower fluctuations in end-tidal CO2 with hypercapnia, despite similar ventilatory oscillations observed between conditions. These findings suggest that healthy prematurely born adults display similar overall ventilation to their term-born counterparts under various environmental stressors, but that combined ventilatory stimuli could induce an irregular underlying ventilatory pattern. Moreover, barometric pressure may be an important factor when assessing ventilatory responsiveness to moderate hypoxic stimuli. KEY POINTS: Evidence exists for unique pulmonary and respiratory function under hypoxic conditions in adult survivors of pre-term birth. Whether pre-term birth per se causes these differences requires a comparison of conventionally healthy prematurely born adults with an appropriately matched sample of term-born individuals. According to the present data, there is no difference between healthy pre-term and well-matched term-born individuals in the magnitude of pulmonary ventilation or arterial blood gases during independent and combined hypobaria, hypoxia and hypercapnia. Terrestrial altitude (hypobaria) was necessary to induce differences in ventilation between normoxia and a hypoxic stimulus equivalent to ∼3375 m of altitude. Furthermore, peak power in pulse oxygen saturation was similar between hypobaric normoxia and normobaric hypoxia. The observed similarities between groups suggest that ventilatory regulation under various environmental stimuli is not impaired by pre-term birth per se. Instead, an integrated combination of neonatal treatment strategies and cardiorespiratory fitness/disease status might underlie previously observed chemosensitivity impairments.

2.
J Physiol ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38116893

RESUMEN

Premature birth impairs cardiac and ventilatory responses to both hypoxia and hypercapnia, but little is known about cerebrovascular responses. Both at sea level and after 2 days at high altitude (3375 m), 16 young preterm-born (gestational age, 29 ± 1 weeks) and 15 age-matched term-born (40 ± 0 weeks) adults were exposed to two consecutive 4 min bouts of hyperoxic hypercapnic conditions (3% CO2 -97% O2 ; 6% CO2 -94% O2 ), followed by two periods of voluntary hyperventilation-induced hypocapnia. We measured middle cerebral artery blood velocity, end-tidal CO2 , pulmonary ventilation, beat-by-beat mean arterial pressure and arterialized capillary blood gases. Baseline middle cerebral artery blood velocity increased at high altitude compared with sea level in term-born (+24 ± 39%, P = 0.036), but not in preterm-born (-4 ± 27%, P = 0.278) adults. The end-tidal CO2 , pulmonary ventilation and mean arterial pressure were similar between groups at sea level and high altitude. Hypocapnic cerebrovascular reactivity was higher at high altitude compared with sea level in term-born adults (+173 ± 326%, P = 0.026) but not in preterm-born adults (-21 ± 107%, P = 0.572). Hypercapnic reactivity was altered at altitude only in preterm-born adults (+125 ± 144%, P < 0.001). Collectively, at high altitude, term-born participants showed higher hypocapnic (P = 0.012) and lower hypercapnic (P = 0.020) CO2 reactivity compared with their preterm-born peers. In conclusion, exposure to high altitude revealed different cerebrovascular responses in preterm- compared with term-born adults, despite similar ventilatory responses. These findings suggest a blunted cerebrovascular response at high altitude in preterm-born adults, which might predispose these individuals to an increased risk of high-altitude illnesses. KEY POINTS: Cerebral haemodynamics and cerebrovascular reactivity in normoxia are known to be similar between term-born and prematurely born adults. In contrast, acute exposure to high altitude unveiled different cerebrovascular responses to hypoxia, hypercapnia and hypocapnia. In particular, cerebral vasodilatation was impaired in prematurely born adults, leading to an exaggerated cerebral vasoconstriction. Cardiovascular and ventilatory responses to both hypo- and hypercapnia at sea level and at high altitude were similar between control subjects and prematurely born adults. Other mechanisms might therefore underlie the observed blunted cerebral vasodilatory responses in preterm-born adults at high altitude.

3.
J Physiol ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860950

RESUMEN

Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.

4.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R661-R669, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094448

RESUMEN

Acclima(tiza)tion to heat or hypoxia enhances work capacity in hot and hypoxic environmental conditions, respectively; an acclimation response is considered to be mediated by stimuli-specific molecular/systemic adaptations and potentially facilitated by the addition of exercise sessions. Promising findings at the cellular level provided the impetus for recent studies investigating whether acclimation to one stressor will ultimately facilitate whole body performance when exercise is undertaken in a different environmental condition. The present critical Mini-Review examines the theory of cross-adaptation between heat and hypoxia with particular reference to the determinants of aerobic performance. Indeed, early functional adaptations (improved exercise economy and enhanced oxyhemoglobin saturation) succeeded by later morphological adaptations (increased hemoglobin mass) might aid acclimatized humans perform aerobic work in an alternative environmental setting. Longer-term acclimation protocols that focus on the specific adaptation kinetics (and further allow for the adaptation reversal) will elucidate the exact physiological mechanisms that might mediate gains in aerobic performance or explain the lack thereof.


Asunto(s)
Calor , Oxihemoglobinas , Humanos , Aclimatación/fisiología , Ejercicio Físico/fisiología , Hipoxia
5.
Eur J Appl Physiol ; 122(9): 1991-2003, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35589858

RESUMEN

The pre-term birth survival rate has increased considerably in recent decades, and research investigating the long-term effects of premature birth is growing. Moreover, altitude sojourns are increasing in popularity and are often accompanied by various levels of physical activity. Individuals born pre-term appear to exhibit altered acute ventilatory responses to hypoxia, potentially predisposing them to high-altitude illness. These impairments are likely due to the use of perinatal hyperoxia stunting the maturation of carotid body chemoreceptors, but may also be attributed to limited lung diffusion capacity and/or gas exchange inefficiency. Aerobic exercise capacity also appears to be reduced in this population. This may relate to the aforementioned respiratory impairments, or could be due to physiological limitations in pulmonary blood flow or at the exercising muscle (e.g. mitochondrial efficiency). However, surprisingly, the debilitative effects of exercise when performed at altitude do not seem to be exacerbated by premature birth. In fact, it is reasonable to speculate that pre-term birth could protect against the consequences of exercise combined with hypoxia. The mechanisms that underlie this assertion might relate to differences in oxidative stress responses or in cardiopulmonary morphology in pre-term individuals, compared to their full-term counterparts. Further research is required to elucidate the independent effects of neonatal treatment, sex differences and chronic lung disease, and to establish causality in some of the proposed mechanisms that could underlie the differences discussed throughout this review. A more in-depth understanding of the acclimatisation responses to chronic altitude exposures would also help to inform appropriate interventions in this clinical population.


Asunto(s)
Enfermedades Pulmonares , Nacimiento Prematuro , Altitud , Ejercicio Físico/fisiología , Femenino , Humanos , Hipoxia , Recién Nacido , Masculino , Consumo de Oxígeno/fisiología
6.
Int J Sports Med ; 43(13): 1129-1136, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35926513

RESUMEN

We aimed to identify potential physiological and performance differences of trained cross-country skiers (V˙o2max=60±4 ml ∙ kg-1 ∙ min-1) following two, 3-week long altitude modalities: 1) training at moderate altitudes (600-1700 m) and living at 1500 m (LMTM;N=8); and 2) training at moderate altitudes (600-1700 m) and living at 1500 m with additional nocturnal normobaric hypoxic exposures (FiO2 =0.17;LHTM; N=8). All participants conducted the same training throughout the altitude training phase and underwent maximal roller ski trials and submaximal cyclo-ergometery before, during and one week after the training camps. No exercise performance or hematological differences were observed between the two modalities. The average roller ski velocities were increased one week after the training camps following both LMTM (p=0.03) and LHTM (p=0.04) with no difference between the two (p=0.68). During the submaximal test, LMTM increased the Tissue Oxygenation Index (11.5±6.5 to 1.0±8.5%; p=0.04), decreased the total hemoglobin concentration (15.1±6.5 to 1.7±12.9 a.u.;p=0.02), and increased blood pH (7.36±0.03 to 7.39±0.03;p=0.03). On the other hand, LHTM augmented minute ventilation (76±14 to 88±10 l·min-1;p=0.04) and systemic blood oxygen saturation by 2±1%; (p=0.02) with no such differences observed following the LMTM. Collectively, despite minor physiological differences observed between the two tested altitude training modalities both induced comparable exercise performance modulation.


Asunto(s)
Altitud , Consumo de Oxígeno , Humanos , Consumo de Oxígeno/fisiología , Hipoxia , Ejercicio Físico/fisiología , Prueba de Esfuerzo
7.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R844-R857, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668436

RESUMEN

Available evidence indicates that elevated blood ketones are associated with improved hypoxic tolerance in rodents. From this perspective, we hypothesized that exogenous ketosis by oral intake of the ketone ester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE) may induce beneficial physiological effects during prolonged exercise in acute hypoxia. As we recently demonstrated KE to deplete blood bicarbonate, which per se may alter the physiological response to hypoxia, we evaluated the effect of KE both in the presence and absence of bicarbonate intake (BIC). Fourteen highly trained male cyclists performed a simulated cycling race (RACE) consisting of 3-h intermittent cycling (IMT180') followed by a 15-min time-trial (TT15') and an all-out sprint at 175% of lactate threshold (SPRINT). During RACE, fraction of inspired oxygen ([Formula: see text]) was gradually decreased from 18.6% to 14.5%. Before and during RACE, participants received either 1) 75 g of ketone ester (KE), 2) 300 mg/kg body mass bicarbonate (BIC), 3) KE + BIC, or 4) a control drink in addition to 60 g of carbohydrates/h in a randomized, crossover design. KE counteracted the hypoxia-induced drop in blood ([Formula: see text]) and muscle oxygenation by ∼3%. In contrast, BIC decreased [Formula: see text] by ∼2% without impacting muscle oxygenation. Performance during TT15' and SPRINT were similar between all conditions. In conclusion, KE slightly elevated the degree of blood and muscle oxygenation during prolonged exercise in moderate hypoxia without impacting exercise performance. Our data warrant to further investigate the potential of exogenous ketosis to improve muscular and cerebral oxygenation status, and exercise tolerance in extreme hypoxia.


Asunto(s)
Bicarbonatos/administración & dosificación , Hidroxibutiratos/administración & dosificación , Hipoxia , Cuerpos Cetónicos/sangre , Cetosis/sangre , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Administración Oral , Adulto , Bicarbonatos/metabolismo , Ciclismo , Estudios Cruzados , Método Doble Ciego , Tolerancia al Ejercicio/efectos de los fármacos , Humanos , Hidroxibutiratos/metabolismo , Masculino , Músculo Esquelético/metabolismo , Factores de Tiempo , Adulto Joven
8.
Adv Physiol Educ ; 45(3): 538-540, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280042

RESUMEN

The COVID-19 pandemic provoked a need for rapid adaptation of teaching strategies and learning environments. Thus novel approaches, predominantly based on online/virtual platforms are needed to minimize the negative effects of the pandemic on teaching (and learning). Herein we describe our recent web-based symposium series on environmental physiology and ergonomics initiative as an example of such a strategy. We outline the ideas behind this series and its implementation, which could serve as an example of a useful joint interactive virtual educational environment that could be applied to any physiology subspecialty. Based on the feedback received from all stakeholders involved in the process, we strongly believe that such an approach can provide an excellent platform for all educational levels from undergraduate students up to seasoned academics. Importantly, the unrestricted availability (free registration and publication of recordings and student handouts) is an important consideration for the democratization of science and the inclusion of financially less well-supported students and academics.


Asunto(s)
COVID-19 , Educación a Distancia , Curriculum , Humanos , Pandemias , SARS-CoV-2
9.
Sensors (Basel) ; 21(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34502822

RESUMEN

Monitoring core body temperature (Tc) during training and competitions, especially in a hot environment, can help enhance an athlete's performance, as well as lower the risk for heat stroke. Accordingly, a noninvasive sensor that allows reliable monitoring of Tc would be highly beneficial in this context. One such novel non-invasive sensor was recently introduced onto the market (CORE, greenTEG, Rümlang, Switzerland), but, to our knowledge, a validation study of this device has not yet been reported. Therefore, the purpose of this study was to evaluate the validity and reliability of the CORE sensor. In Study I, 12 males were subjected to a low-to-moderate heat load by performing, on two separate occasions several days apart, two identical 60-min bouts of steady-state cycling in the laboratory at 19 °C and 30% relative humidity. In Study II, 13 males were subjected to moderate-to-high heat load by performing 90 min of cycling in the laboratory at 31 °C and 39% relative humidity. In both cases the core body temperatures indicated by the CORE sensor were compared to the corresponding values obtained using a rectal sensor (Trec). The first major finding was that the reliability of the CORE sensor is acceptable, since the mean bias between the two identical trials of exercise (0.02 °C) was not statistically significant. However, under both levels of heat load, the body temperature indicated by the CORE sensor did not agree well with Trec, with approximately 50% of all paired measurements differing by more than the predefined threshold for validity of ≤0.3 °C. In conclusion, the results obtained do not support the manufacturer's claim that the CORE sensor provides a valid measure of core body temperature.


Asunto(s)
Temperatura Corporal , Golpe de Calor , Ejercicio Físico , Calor , Humanos , Masculino , Reproducibilidad de los Resultados
10.
J Physiol ; 598(10): 2001-2019, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31957891

RESUMEN

KEY POINTS: High altitude-induced hypoxia in humans evokes a pattern of breathing known as periodic breathing (PB), in which the regular oscillations corresponding to rhythmic expiration and inspiration are modulated by slow periodic oscillations. The phase coherence between instantaneous heart rate and respiration is shown to increase significantly at the frequency of periodic breathing during acute and sustained normobaric and hypobaric hypoxia. It is also shown that polymorphism in specific genes, NOTCH4 and CAT, is significantly correlated with this coherence, and thus with the incidence of PB. Differences in phase shifts between blood flow signals and respiratory and PB oscillations clearly demonstrate contrasting origins of the mechanisms underlying normal respiration and PB. These novel findings provide a better understanding of both the genetic and the physiological mechanisms responsible for respiratory control during hypoxia at altitude, by linking genetic factors with cardiovascular dynamics, as evaluated by phase coherence. ABSTRACT: Periodic breathing (PB) occurs in most humans at high altitudes and is characterised by low-frequency periodic alternation between hyperventilation and apnoea. In hypoxia-induced PB the dynamics and coherence between heart rate and respiration and their relationship to underlying genetic factors is still poorly understood. The aim of this study was to investigate, through novel usage of time-frequency analysis methods, the dynamics of hypoxia-induced PB in healthy individuals genotyped for a selection of antioxidative and neurodevelopmental genes. Breathing, ECG and microvascular blood flow were simultaneously monitored for 30 min in 22 healthy males. The same measurements were repeated under normoxic and hypoxic (normobaric (NH) and hypobaric (HH)) conditions, at real and simulated altitudes of up to 3800 m. Wavelet phase coherence and phase difference around the frequency of breathing (approximately 0.3 Hz) and around the frequency of PB (approximately 0.06 Hz) were evaluated. Subjects were genotyped for common functional polymorphisms in antioxidative and neurodevelopmental genes. During hypoxia, PB resulted in increased cardiorespiratory coherence at the PB frequency. This coherence was significantly higher in subjects with NOTCH4 polymorphism, and significantly lower in those with CAT polymorphism (HH only). Study of the phase shifts clearly indicates that the physiological mechanism of PB is different from that of the normal respiratory cycle. The results illustrate the power of time-evolving oscillatory analysis content in obtaining important insight into high altitude physiology. In particular, it provides further evidence for a genetic predisposition to PB and may partly explain the heterogeneity in the hypoxic response.


Asunto(s)
Mal de Altura , Hipoxia , Altitud , Humanos , Hipoxia/genética , Polimorfismo Genético , Respiración
11.
Eur J Appl Physiol ; 120(6): 1341-1355, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32270264

RESUMEN

PURPOSE: We compared the effects of hypobaric and normobaric hypoxia on select cardio-respiratory responses, oxidative stress and acute mountain sickness (AMS) severity in prematurely born individuals, known to exhibit blunted hypoxic ventilatory response. METHODS: Sixteen prematurely born but otherwise healthy males underwent two 8-h hypoxic exposures under: (1) hypobaric hypoxic [HH; terrestrial altitude 3840 m; PiO2:90.2 (0.5) mmHg; BP: 478 (2) mmHg] and (2) normobaric hypoxic [NH; PiO2:90.6 (0.9) mmHg; FiO2:0.142 (0.001)] condition. Resting values of capillary oxyhemoglobin saturation (SpO2), heart rate (HR) and blood pressure were measured before and every 2 h during the exposures. Ventilatory responses and middle cerebral artery blood flow velocity (MCAv) were assessed at rest and during submaximal cycling before and at 4 and 8 h. Plasmatic levels of selected oxidative stress and antioxidant markers and AMS symptoms were also determined at these time points. RESULTS: HH resulted in significantly lower resting (P = 0.010) and exercise (P = 0.004) SpO2 as compared to NH with no significant differences in the ventilatory parameters, HR or blood pressure. No significant differences between conditions were found in resting or exercising MCAv and measured oxidative stress markers. Significantly lower values of ferric-reducing antioxidant power (P = 0.037) were observed during HH as opposed to NH. AMS severity was higher at 8 h compared to baseline (P = 0.002) with no significant differences between conditions. CONCLUSION: These data suggest that, in prematurely born adults, 8-h exposure to hypobaric, as opposed to normobaric hypoxia, provokes greater reductions in systemic oxygenation and antioxidant capacity. Further studies investigating prolonged hypobaric exposures in this population are warranted. REGISTRATION: NCT02780908 (ClinicalTrials.gov).


Asunto(s)
Mal de Altura/fisiopatología , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Hipoxia/fisiopatología , Estrés Oxidativo/fisiología , Biomarcadores/sangre , Velocidad del Flujo Sanguíneo/fisiología , Catalasa/sangre , Glutatión Peroxidasa/sangre , Humanos , Hipoxia/sangre , Recien Nacido Prematuro , Masculino , Malondialdehído/sangre , Arteria Cerebral Media/fisiología , Presión , Sistema de Registros , Adulto Joven
12.
J Therm Biol ; 91: 102602, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32716857

RESUMEN

Exercise heat acclimation (HA) is known to magnify the sweating response by virtue of a lower threshold as well as increased gain and maximal capacity of sweating. However, HA has been shown to potentiate the shivering response in a cold-air environment. We investigated whether HA would alter heat loss and heat production responses during water immersion. Twelve healthy male participants underwent a 10-day HA protocol comprising daily 90-min controlled-hyperthermia (target rectal temperature, Tre 38.5 °C) exercise sessions. Preceding and following HA, the participants performed a maximal exercise test in thermoneutral conditions (ambient temperature 23 °C, relative humidity 50%) and were, following exercise, immersed in 28 °C water for 60 min. Thermal comfort zone (TCZ) was also assessed with participants regulating the temperature of a water-perfused suit during heating and cooling. Baseline pre-immersion Tre was similar pre- and post-HA (pre: 38.33 ± 0.33 °C vs post: 38.12 ± 0.36 °C, p = 0.092). The Tre cooling rate was identical pre-to post-HA (-0.03 ± 0.01 °C·min-1, p = 0.31), as was the vasomotor response reflected in the forearm-fingertip temperature difference. Shivering thresholds (p = 0.43) and gains (p = 0.61) were not affected by HA. TCZ was established at similar temperatures, with the magnitude in regulated water temperature being 7.6 (16.3) °C pre-HA and 5.1 (24.7) °C post-HA (p = 0.65). The present findings suggest that heat production and heat loss responses during whole body cooling as well as the skin thermal comfort zone remained unaltered by a controlled-hyperthermia HA protocol.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Tiritona , Termotolerancia , Adulto , Humanos , Masculino , Acondicionamiento Físico Humano/métodos , Temperatura Cutánea
13.
Exp Physiol ; 104(3): 345-358, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30536521

RESUMEN

NEW FINDINGS: What is the central question of this study? Controlled-hyperthermia heat-acclimation protocols induce an array of thermoregulatory and cardiovascular adaptations that facilitate exercise in hot conditions. We investigated whether this ergogenic potential can be transferred to thermoneutral normoxic or hypoxic exercise conditions. What is the main finding and its importance? We showed that heat acclimation did not affect maximal cardiac output or maximal aerobic power in thermoneutral normoxic or hypoxic conditions. Heat acclimation augmented the sweating response in thermoneutral normoxic conditions. The cross-adaptation theory, according to which heat acclimation could facilitate hypoxic exercise capacity, is not supported by our data. ABSTRACT: Heat acclimation (HA) mitigates heat-induced decrements in maximal aerobic power ( V ̇ O 2 peak ) and augments exercise thermoregulatory responses in the heat. Whether this beneficial effect of HA is observed in hypoxic or thermoneutral conditions remains unresolved. We explored the effects of HA on cardiorespiratory and thermoregulatory responses to exercise in normoxic, hypoxic and hot conditions. Twelve men [ V ̇ O 2 peak 54.7(standard deviation 5.7) ml kg-1 min-1 ] participated in a HA protocol consisting of 10 daily 90-min controlled-hyperthermia (target rectal temperature, Tre  = 38.5°C) exercise sessions. Before and after HA, we determined V ̇ O 2 peak in thermoneutral normoxic (NOR), thermoneutral hypoxic (fractional inspired O2  = 13.5%; HYP) and hot (35°C, 50% relative humidity; HE) conditions in a randomized and counterbalanced order. Preceding each maximal cycling test, a 30-min steady-state exercise bout at 40% of the NOR peak power output was used to evaluate thermoregulatory responses. Heat acclimation induced the expected adaptations in HE: reduced Tre and submaximal heart rate, enhanced sweating response and expanded plasma volume. However, HA did not affect V ̇ O 2 peak or maximal cardiac output (P = 0.61). The peak power output was increased post-HA in NOR (P < 0.001) and HE (P < 0.001) by 41 ± 21 and 26 ± 22 W, respectively, but not in HYP (P = 0.14). Gross mechanical efficiency was higher (P = 0.004), whereas resting Tre and sweating thresholds were lower (P < 0.01) post-HA across environments. Nevertheless, the gain of the sweating response decreased (P = 0.05) in HYP. In conclusion, our data do not support a beneficial cross-over effect of HA on V ̇ O 2 peak in normoxic or hypoxic conditions.


Asunto(s)
Aclimatación/fisiología , Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Adaptación Biológica/fisiología , Adulto , Calor , Humanos , Masculino , Adulto Joven
14.
Int J Sports Med ; 38(8): 627-636, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28564745

RESUMEN

We aimed to elucidate potential differential effects of hypoxia on cardiorespiratory responses during submaximal cycling and simulated skiing exercise between adults and pre-pubertal children. Healthy, low-altitude residents (adults, N=13, Age=40±4yrs.; children, N=13, age=8±2yrs.) were tested in normoxia (Nor: PiO2=134±0.4 mmHg; 940 m) and normobaric hypoxia (Hyp: PiO2=105±0.6 mmHg; ~3 000 m) following an overnight hypoxic acclimation (≥12-hrs). On both days, the participants underwent a graded cycling test and a simulated skiing protocol. Minute ventilation (VE), oxygen uptake (VO2), heart rate (HR) and capillary-oxygen saturation (SpO2) were measured throughout both tests. The cycling data were interpolated for 2 relative workload levels (1 W·kg-1 & 2 W·kg-1). Higher resting HR in hypoxia, compared to normoxia was only noted in children (Nor:78±17; Hyp:89±17 beats·min-1; p<0.05), while SpO2 was significantly lower in hypoxia (Nor:97±1%; Hyp:91±2%; p<0.01) with no between-group differences. The VE, VO2 and HR responses were higher during hypoxic compared to normoxic cycling test in both groups (p<0.05). Except for greater HR during hypoxic compared to normoxic skiing in children (Nor:155±19; Hyp:167±13 (beats·min-1); p<0.05), no other significant between-group differences were noted during the cycling and skiing protocols. In summary, these data suggest similar cardiorespiratory responses to submaximal hypoxic cycling and simulated skiing in adults and children.


Asunto(s)
Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Consumo de Oxígeno/fisiología , Aclimatación , Adulto , Ciclismo/fisiología , Niño , Prueba de Esfuerzo , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Fuerza Muscular , Esquí/fisiología
16.
Appetite ; 107: 28-37, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27395413

RESUMEN

Environmental hypoxia and inactivity have both been shown to modulate appetite. To elucidate the independent and combined effects of hypoxia and bed rest-induced inactivity on appetite-related hormones and subjective appetite, eleven healthy, non-obese males underwent three experimental interventions in a cross-over and randomized fashion: 1) Hypoxic confinement combined with daily moderate-intensity exercise (HAMB, FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4 mmHg) 2) Bed rest in normoxia (NBR, FiO2 = 0.209; PiO2 = 133.1 ± 0.3 mmHg) and 3) Bed rest in hypoxia (HBR, FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4 mmHg). A mixed-meal tolerance test (MTT), followed by an ad libitum meal were performed before (Pre) and after 16-days (Post) of each intervention. Composite satiety scores (CSS) during the MTT were calculated from visual analogue scores, while fasting and postprandial concentrations of total ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1) and leptin were quantified from arterialized-venous samples. Postprandial CSS were significantly lower at Post compared to Pre in NBR only (P < 0.05) with no differences observed in ad libitum meal intakes. Postprandial concentrations and incremental area under the curve (AUC) for total ghrelin and PYY were unchanged following all interventions. Postprandial GLP-1 concentrations were only reduced at Post following HBR (P < 0.05) with resulting AUC changes being significantly lower compared to HAMB (P < 0.01). Fasting leptin was reduced following HAMB (P < 0.05) with no changes observed following NBR and HBR. These findings suggest that independently, 16-day of simulated altitude exposure (∼4000 m) and bed rest-induced inactivity do not significantly alter subjective appetite or ad libitum intakes. The measured appetite-related hormones following both HAMB and HBR point to a situation of hypoxia-induced appetite stimulation, although this did not reflect in higher ad libitum intakes. CLINICAL TRIAL REGISTRATION NUMBER: NCT02293772.


Asunto(s)
Regulación del Apetito , Apetito , Reposo en Cama , Hipoxia/sangre , Adulto , Estudios Cruzados , Dieta , Ejercicio Físico , Ghrelina/sangre , Péptido 1 Similar al Glucagón/sangre , Humanos , Hipoxia/fisiopatología , Leptina/sangre , Masculino , Péptido YY/sangre , Periodo Posprandial , Adulto Joven
18.
J Physiol ; 598(5): 901-902, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32053210
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA