Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 138(17): 1603-1614, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34115825

RESUMEN

EZH2, the enzymatic component of PRC2, has been identified as a key factor in hematopoiesis. EZH2 loss-of-function mutations have been found in myeloproliferative neoplasms, particularly in myelofibrosis, but the precise function of EZH2 in megakaryopoiesis is not fully delineated. Here, we show that EZH2 inhibition by small molecules and short hairpin RNA induces megakaryocyte (MK) commitment by accelerating lineage marker acquisition without change in proliferation. Later in differentiation, EZH2 inhibition blocks proliferation and polyploidization and decreases proplatelet formation. EZH2 inhibitors similarly reduce MK polyploidization and proplatelet formation in vitro and platelet levels in vivo in a JAK2V617F background. In transcriptome profiling, the defect in proplatelet formation was associated with an aberrant actin cytoskeleton regulation pathway, whereas polyploidization was associated with an inhibition of expression of genes involved in DNA replication and repair and an upregulation of cyclin-dependent kinase inhibitors, particularly CDKN1A and CDKN2D. The knockdown of CDKN1A and to a lesser extent CDKN2D could partially rescue the percentage of polyploid MKs. Moreover, H3K27me3 and EZH2 chromatin immunoprecipitation assays revealed that CDKN1A is a direct EZH2 target and CDKN2D expression is not directly regulated by EZH2, suggesting that EZH2 controls MK polyploidization directly through CDKN1A and indirectly through CDKN2D.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Megacariocitos/citología , Trombopoyesis , Animales , Plaquetas/citología , Plaquetas/metabolismo , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Megacariocitos/metabolismo , Ratones , Interferencia de ARN , Transcriptoma
2.
Haematologica ; 108(8): 2130-2145, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794499

RESUMEN

Sustained ANKRD26 expression associated with germline ANKRD26 mutations causes thrombocytopenia 2 (THC2), an inherited platelet disorder associated with a predisposition to leukemia. Some patients also present with erythrocytosis and/or leukocytosis. Using multiple human-relevant in vitro models (cell lines, primary patients' cells and patient-derived induced pluripotent stem cells) we demonstrate for the first time that ANKRD26 is expressed during the early steps of erythroid, megakaryocyte and granulocyte differentiation, and is necessary for progenitor cell proliferation. As differentiation progresses, ANKRD26 expression is progressively silenced, to complete the cellular maturation of the three myeloid lineages. In primary cells, abnormal ANKRD26 expression in committed progenitors directly affects the proliferation/differentiation balance for the three cell types. We show that ANKRD26 interacts with and crucially modulates the activity of MPL, EPOR and G-CSFR, three homodimeric type I cytokine receptors that regulate blood cell production. Higher than normal levels of ANKRD26 prevent the receptor internalization that leads to increased signaling and cytokine hypersensitivity. These findings afford evidence how ANKRD26 overexpression or the absence of its silencing during differentiation is responsible for myeloid blood cell abnormalities in patients with THC2.


Asunto(s)
Leucemia , Receptores de Citocinas , Humanos , Citocinas , Hematopoyesis , Leucemia/patología , Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular
3.
Blood ; 133(16): 1778-1788, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30602618

RESUMEN

Filamin A (FLNa) links the cell membrane with the cytoskeleton and is central in several cellular processes. Heterozygous mutations in the X-linked FLNA gene are associated with a large spectrum of conditions, including macrothrombocytopenia, called filaminopathies. Using an isogenic pluripotent stem cell model derived from patients, we show that the absence of the FLNa protein in megakaryocytes (MKs) leads to their incomplete maturation, particularly the inability to produce proplatelets. Reduction in proplatelet formation potential is associated with a defect in actomyosin contractility, which results from inappropriate RhoA activation. This dysregulated RhoA activation was observed when MKs were plated on fibrinogen but not on other matrices (fibronectin, vitronectin, collagen 1, and von Willebrand factor), strongly suggesting a role for FLNa/αIIbß3 interaction in the downregulation of RhoA activity. This was confirmed by experiments based on the overexpression of FLNa mutants deleted in the αIIbß3-binding domain and the RhoA-interacting domain, respectively. Finally, pharmacological inhibition of the RhoA-associated kinase ROCK1/2 restored a normal phenotype and proplatelet formation. Overall, this work suggests a new etiology for macrothrombocytopenia, in which increased RhoA activity is associated with disrupted FLNa/αIIbß3 interaction.


Asunto(s)
Filaminas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/etiología , Femenino , Fibrinógeno/metabolismo , Filaminas/genética , Humanos , Megacariocitos/química , Megacariocitos/patología , Mutación , Unión Proteica/fisiología , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo
4.
Blood ; 128(26): 3137-3145, 2016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-27737892

RESUMEN

Megakaryocyte polyploidy is characterized by cytokinesis failure resulting from defects in contractile forces at the cleavage furrow. Although immature megakaryocytes express 2 nonmuscle myosin II isoforms (MYH9 [NMIIA] and MYH10 [NMIIB]), only NMIIB localizes at the cleavage furrow, and its subsequent absence contributes to polyploidy. In this study, we tried to understand why the abundant NMIIA does not localize at the furrow by focusing on the RhoA/ROCK pathway that has a low activity in polyploid megakaryocytes. We observed that under low RhoA activity, NMII isoforms presented different activity that determined their localization. Inhibition of RhoA/ROCK signaling abolished the localization of NMIIB, whereas constitutively active RhoA induced NMIIA at the cleavage furrow. Thus, although high RhoA activity favored the localization of both the isoforms, only NMIIB could localize at the furrow at low RhoA activity. This was further confirmed in erythroblasts that have a higher basal RhoA activity than megakaryocytes and express both NMIIA and NMIIB at the cleavage furrow. Decreased RhoA activity in erythroblasts abolished localization of NMIIA but not of NMIIB from the furrow. This differential localization was related to differences in actin turnover. Megakaryocytes had a higher actin turnover compared with erythroblasts. Strikingly, inhibition of actin polymerization was found to be sufficient to recapitulate the effects of inhibition of RhoA/ROCK pathway on NMII isoform localization; thus, cytokinesis failure in megakaryocytes is the consequence of both the absence of NMIIB and a low RhoA activity that impairs NMIIA localization at the cleavage furrow through increased actin turnover.


Asunto(s)
Citocinesis , Megacariocitos/citología , Megacariocitos/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Actinas/metabolismo , Eritrocitos/citología , Humanos , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Polimerizacion , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
5.
Blood ; 128(26): 3146-3158, 2016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-28034873

RESUMEN

The mechanisms behind the hereditary thrombocytosis induced by the thrombopoietin (THPO) receptor MPL P106L mutant remain unknown. A complete trafficking defect to the cell surface has been reported, suggesting either weak constitutive activity or nonconventional THPO-dependent mechanisms. Here, we report that the thrombocytosis phenotype induced by MPL P106L belongs to the paradoxical group, where low MPL levels on platelets and mature megakaryocytes (MKs) lead to high serum THPO levels, whereas weak but not absent MPL cell-surface localization in earlier MK progenitors allows response to THPO by signaling and amplification of the platelet lineage. MK progenitors from patients showed no spontaneous growth and responded to THPO, and MKs expressed MPL on their cell surface at low levels, whereas their platelets did not respond to THPO. Transduction of MPL P106L in CD34+ cells showed that this receptor was more efficiently localized at the cell surface on immature than on mature MKs, explaining a proliferative response to THPO of immature cells and a defect in THPO clearance in mature cells. In a retroviral mouse model performed in Mpl-/- mice, MPL P106L could induce a thrombocytosis phenotype with high circulating THPO levels. Furthermore, we could select THPO-dependent cell lines with more cell-surface MPL P106L localization that was detected by flow cytometry and [125I]-THPO binding. Altogether, these results demonstrate that MPL P106L is a receptor with an incomplete defect in trafficking, which induces a low but not absent localization of the receptor on cell surface and a response to THPO in immature MK cells.


Asunto(s)
Membrana Celular/metabolismo , Mutación/genética , Receptores de Trombopoyetina/genética , Trombocitosis/genética , Trombocitosis/patología , Animales , Línea Celular , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Familia , Femenino , Humanos , Masculino , Megacariocitos/metabolismo , Ratones , Linaje , Transporte de Proteínas , Receptores de Trombopoyetina/metabolismo , Retroviridae/metabolismo , Transducción Genética
6.
Blood ; 127(3): 333-42, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26450985

RESUMEN

Mutations in signaling molecules of the cytokine receptor axis play a central role in myeloproliferative neoplasm (MPN) pathogenesis. Polycythemia vera is mainly related to JAK2 mutations, whereas a wider mutational spectrum is detected in essential thrombocythemia (ET) with mutations in JAK2, the thrombopoietin (TPO) receptor (MPL), and the calreticulin (CALR) genes. Here, we studied the mutational profile of 17 ET patients negative for JAK2V617F, MPLW515K/L, and CALR mutations, using whole-exome sequencing and next-generation sequencing (NGS) targeted on JAK2 and MPL. We found several signaling mutations including JAK2V617F at very low allele frequency, 1 homozygous SH2B3 mutation, 1 MPLS505N, 1 MPLW515R, and 2 MPLS204P mutations. In the remaining patients, 4 presented a clonal and 7 a polyclonal hematopoiesis, suggesting that certain triple-negative ETs are not MPNs. NGS on 26 additional triple-negative ETs detected only 1 MPLY591N mutation. Functional studies on MPLS204P and MPLY591N revealed that they are weak gain-of-function mutants increasing MPL signaling and conferring either TPO hypersensitivity or independence to expressing cells, but with a low efficiency. Further studies should be performed to precisely determine the frequency of MPLS204 and MPLY591 mutants in a bigger cohort of MPN.


Asunto(s)
Mutación , Receptores de Trombopoyetina/genética , Trombocitemia Esencial/genética , Sustitución de Aminoácidos , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Codón , Estudios de Cohortes , Hibridación Genómica Comparativa , Citocinas/farmacología , Análisis Mutacional de ADN , Exoma , Genotipo , Granulocitos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Janus Quinasa 2/genética , Transporte de Proteínas , Receptores de Trombopoyetina/metabolismo , Trombocitemia Esencial/metabolismo
7.
Am J Hematol ; 93(2): 195-204, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29090484

RESUMEN

Rare gain-of-function mutations within the ITGA2B or ITGB3 genes have been recognized to cause macrothrombocytopenia (MTP). Here we report three new families with autosomal dominant (AD) MTP, two harboring the same mutation of ITGA2B, αIIbR995W, and a third family with an ITGB3 mutation, ß3D723H. In silico analysis shows how the two mutated amino acids directly modify the salt bridge linking the intra-cytoplasmic part of αIIb to ß3 of the integrin αIIbß3. For all affected patients, the bleeding syndrome and MTP was mild to moderate. Platelet aggregation tended to be reduced but not absent. Electron microscopy associated with a morphometric analysis revealed large round platelets; a feature being the presence of abnormal large α-granules with some giant forms showing signs of fusion. Analysis of the maturation and development of megakaryocytes reveal no defect in their early maturation but abnormal proplatelet formation was observed with increased size of the tips. Interestingly, this study revealed that in addition to the classical phenotype of patients with αIIbß3 intracytoplasmic mutations there is an abnormal maturation of α-granules. It is now necessary to determine if this feature is a characteristic of all mutations disturbing the αIIb R995/ß3 D723 salt bridge.


Asunto(s)
Gránulos Citoplasmáticos/patología , Integrina alfa2/genética , Integrina beta3/genética , Trombocitopenia/etiología , Plaquetas/ultraestructura , Simulación por Computador , Familia , Humanos , Megacariocitos , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química
8.
Blood ; 125(6): 930-40, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25490895

RESUMEN

To explore how RUNX1 mutations predispose to leukemia, we generated induced pluripotent stem cells (iPSCs) from 2 pedigrees with germline RUNX1 mutations. The first, carrying a missense R174Q mutation, which acts as a dominant-negative mutant, is associated with thrombocytopenia and leukemia, and the second, carrying a monoallelic gene deletion inducing a haploinsufficiency, presents only as thrombocytopenia. Hematopoietic differentiation of these iPSC clones demonstrated profound defects in erythropoiesis and megakaryopoiesis and deregulated expression of RUNX1 targets. iPSC clones from patients with the R174Q mutation specifically generated an increased amount of granulomonocytes, a phenotype reproduced by an 80% RUNX1 knockdown in the H9 human embryonic stem cell line, and a genomic instability. This phenotype, found only with a lower dosage of RUNX1, may account for development of leukemia in patients. Altogether, RUNX1 dosage could explain the differential phenotype according to RUNX1 mutations, with a haploinsufficiency leading to thrombocytopenia alone in a majority of cases whereas a more complete gene deletion predisposes to leukemia.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Hematopoyesis , Leucemia/genética , Mutación , Trombocitopenia/genética , Línea Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Eliminación de Gen , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Leucemia/metabolismo , Leucemia/patología , Datos de Secuencia Molecular , Mutación Missense , Trombocitopenia/metabolismo , Trombocitopenia/patología
9.
Blood ; 124(16): 2554-63, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25061177

RESUMEN

Macrothrombocytopenias are the most important subgroup of inherited thrombocytopenias. This subgroup is particularly heterogeneous because the affected genes are involved in various functions such as cell signaling, cytoskeleton organization, and gene expression. Herein we describe the clinical and hematological features of a consanguineous family with a severe autosomal recessive macrothrombocytopenia associated with a thrombocytopathy inducing a bleeding tendency in the homozygous mutated patients. Platelet activation and cytoskeleton reorganization were impaired in these homozygous patients. Exome sequencing identified a c.222C>G mutation (missense p.74Ile>Met) in PRKACG, a gene encoding the γ-catalytic subunit of the cyclic adenosine monophosphate-dependent protein kinase, the mutated allele cosegregating with the macrothrombocytopenia. We demonstrate that the p.74Ile>Met PRKACG mutation is associated with a marked defect in proplatelet formation and a low level in filamin A in megakaryocytes (MKs). The defect in proplatelet formation was rescued in vitro by lentiviral vector-mediated overexpression of wild-type PRKACG in patient MKs. We thus conclude that PRKACG is a new central actor in platelet biogenesis and a new gene involved in inherited thrombocytopenia with giant platelets associated with a thrombocytopathy.


Asunto(s)
Plaquetas/patología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Mutación de Línea Germinal , Megacariocitos/patología , Trombocitopenia/genética , Adulto , Plaquetas/metabolismo , Preescolar , Citoesqueleto/genética , Citoesqueleto/patología , Humanos , Lactante , Masculino , Megacariocitos/metabolismo , Linaje , Recuento de Plaquetas , Trombocitopenia/complicaciones , Trombocitopenia/patología , Adulto Joven
10.
Haematologica ; 101(12): 1469-1478, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27515249

RESUMEN

Megakaryocytes are naturally polyploid cells that increase their ploidy by endomitosis. However, very little is known regarding the mechanism by which they escape the tetraploid checkpoint to become polyploid. Recently, it has been shown that the tetraploid checkpoint was regulated by the Hippo-p53 pathway in response to a downregulation of Rho activity. We therefore analyzed the role of Hippo-p53 pathway in the regulation of human megakaryocyte polyploidy. Our results revealed that Hippo-p53 signaling pathway proteins are present and are functional in megakaryocytes. Although this pathway responds to the genotoxic stress agent etoposide, it is not activated in tetraploid or polyploid megakaryocytes. Furthermore, Hippo pathway was observed to be uncoupled from Rho activity. Additionally, polyploid megakaryocytes showed increased expression of YAP target genes when compared to diploid and tetraploid megakaryocytes. Although p53 knockdown increased both modal ploidy and proplatelet formation in megakaryocytes, YAP knockdown caused no significant change in ploidy while moderately affecting proplatelet formation. Interestingly, YAP knockdown reduced the mitochondrial mass in polyploid megakaryocytes and decreased expression of PGC1α, an important mitochondrial biogenesis regulator. Thus, the Hippo pathway is functional in megakaryocytes, but is not induced by tetraploidy. Additionally, YAP regulates the mitochondrial mass in polyploid megakaryocytes.


Asunto(s)
Diferenciación Celular , Megacariocitos/citología , Megacariocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Tetraploidía , Proteínas de Unión al GTP rho/metabolismo , Biomarcadores , Plaquetas/citología , Plaquetas/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular/genética , Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vía de Señalización Hippo , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Poliploidía , Proteínas Serina-Treonina Quinasas/genética , Trombopoyesis/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Unión al GTP rho/genética
11.
Blood ; 122(18): 3178-87, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23861250

RESUMEN

Blood platelets are anuclear cell fragments that are essential for blood clotting. Platelets are produced by bone marrow megakaryocytes (MKs), which extend protrusions, or so-called proplatelets, into bone marrow sinusoids. Proplatelet formation requires a profound reorganization of the MK actin and tubulin cytoskeleton. Rho GTPases, such as RhoA, Rac1, and Cdc42, are important regulators of cytoskeletal rearrangements in platelets; however, the specific roles of these proteins during platelet production have not been established. Using conditional knockout mice, we show here that Rac1 and Cdc42 possess redundant functions in platelet production and function. In contrast to a single-deficiency of either protein, a double-deficiency of Rac1 and Cdc42 in MKs resulted in macrothrombocytopenia, abnormal platelet morphology, and impaired platelet function. Double-deficient bone marrow MKs matured normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and structure were barely affected. Together, these results suggest that the combined action of Rac1 and Cdc42 is crucial for platelet production, particularly by regulating microtubule dynamics.


Asunto(s)
Células Progenitoras de Megacariocitos/metabolismo , Megacariocitos/metabolismo , Tubulina (Proteína)/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética , Animales , Western Blotting , Citoesqueleto/metabolismo , Hemostasis/genética , Células Progenitoras de Megacariocitos/citología , Megacariocitos/citología , Megacariocitos/ultraestructura , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microtúbulos/metabolismo , Seudópodos/genética , Seudópodos/metabolismo , Trombocitopenia/sangre , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombosis/sangre , Trombosis/genética , Trombosis/metabolismo , Proteína de Unión al GTP cdc42/deficiencia , Proteína de Unión al GTP rac1/deficiencia
12.
Blood ; 122(10): 1695-706, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23881916

RESUMEN

Megakaryocytes generate platelets through extensive reorganization of the cytoskeleton and plasma membrane. Cdc42 interacting protein 4 (CIP4) is an F-BAR protein that localizes to membrane phospholipids through its BAR domain and interacts with Wiskott-Aldrich Syndrome Protein (WASP) via its SRC homology 3 domain. F-BAR proteins promote actin polymerization and membrane tubulation. To study its function, we generated CIP4-null mice that displayed thrombocytopenia similar to that of WAS(-) mice. The number of megakaryocytes and their progenitors was not affected. However, the number of proplatelet protrusions was reduced in CIP4-null, but not WAS(-), megakaryocytes. Electron micrographs of CIP4-null megakaryocytes showed an altered demarcation membrane system. Silencing of CIP4, not WASP, expression resulted in fewer proplatelet-like extensions. Fluorescence anisotropy studies showed that loss of CIP4 resulted in a more rigid membrane. Micropipette aspiration demonstrated decreased cortical actin tension in megakaryocytic cells with reduced CIP4 or WASP protein. These studies support a new biophysical mechanism for platelet biogenesis whereby CIP4 enhances the complex, dynamic reorganization of the plasma membrane (WASP independent) and actin cortex network (as known for WASP and cortical actin) to reduce the work required for generating proplatelets. CIP4 is a new component in the highly coordinated system of megakaryocytic membrane and cytoskeletal remodeling affecting platelet production.


Asunto(s)
Plaquetas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Fenómenos Biomecánicos , Línea Celular , Ensayo de Unidades Formadoras de Colonias , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Masculino , Megacariocitos/metabolismo , Megacariocitos/patología , Megacariocitos/ultraestructura , Fluidez de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Antígenos de Histocompatibilidad Menor , Ploidias , Transporte de Proteínas , Células Madre/metabolismo , Células Madre/patología , Trombocitopenia/metabolismo , Trombocitopenia/patología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
13.
Stem Cells ; 32(8): 2084-97, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24723429

RESUMEN

Ten-eleven-translocation 2 (TET2) belongs to the TET protein family that catalyzes the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and plays a central role in normal and malignant adult hematopoiesis. Yet the role of TET2 in human hematopoietic development remains largely unknown. Here, we show that TET2 expression is low in human embryonic stem cell (ESC) lines and increases during hematopoietic differentiation. shRNA-mediated TET2 knockdown had no effect on the pluripotency of various ESCs. However, it skewed their differentiation into neuroectoderm at the expense of endoderm and mesoderm both in vitro and in vivo. These effects were rescued by reintroducing the targeted TET2 protein. Moreover, TET2-driven differentiation was dependent on NANOG transcriptional factor. Indeed, TET2 bound to NANOG promoter and in TET2-deficient cells the methylation of the NANOG promoter correlated with a decreased in NANOG expression. The altered differentiation resulting from TET2 knockdown in ESCs led to a decrease in both the number and the cloning capacities of hematopoietic progenitors. These defects were due to an increased apoptosis and an altered gene expression profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm and hematopoietic differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/metabolismo , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Dioxigenasas , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Proteína Homeótica Nanog , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Blood ; 120(13): 2708-18, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22898599

RESUMEN

FPD/AML is a familial platelet disorder characterized by platelet defects, predisposition to acute myelogenous leukemia (AML) and germ-line heterozygous RUNX1 alterations. Here we studied the in vitro megakaryopoiesis of 3 FPD/AML pedigrees. A 60% to 80% decrease in the output of megakaryocytes (MKs) from CD34(+) was observed. MK ploidy level was low and mature MKs displayed a major defect in proplatelet formation. To explain these defects, we focused on myosin II expression as RUNX1 has been shown to regulate MYL9 and MYH10 in an inverse way. In FPD/AML MKs, expression of MYL9 and MYH9 was decreased, whereas MYH10 expression was increased and the MYH10 protein was still present in the cytoplasm of mature MKs. Myosin II activity inhibition by blebbistatin rescued the ploidy defect of FPD/AML MKs. Finally, we demonstrate that MYH9 is a direct target of RUNX1 by chromatin immunoprecipitation and luciferase assays and we identified new RUNX1 binding sites in the MYL9 promoter region. Together, these results demonstrate that the defects in megakaryopoiesis observed in FPD/AML are, in part, related to a deregulation of myosin IIA and IIB expression leading to both a defect in ploidization and proplatelet formation.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Leucemia Mieloide Aguda/patología , Megacariocitos/patología , Mutación/genética , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Trastornos de las Plaquetas Sanguíneas/genética , Trastornos de las Plaquetas Sanguíneas/metabolismo , Western Blotting , Inmunoprecipitación de Cromatina , Femenino , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Luciferasas/metabolismo , Masculino , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética , Linaje , Ploidias , Pronóstico , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Arterioscler Thromb Vasc Biol ; 33(12): 2750-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24115034

RESUMEN

OBJECTIVE: Apoptotic-like phase is an essential step for the platelet formation from megakaryocytes. How controlled is this signaling pathway remained poorly understood. The aim of this study was to determine whether endoplasmic reticulum (ER) stress-induced apoptosis occurs during thrombopoiesis. APPROACH AND RESULTS: Investigation of ER stress and maturation markers in different models of human thrombopoiesis (CHRF, DAMI, MEG-01 cell lines, and hematopoietic stem cells: CD34(+)) as well as in immature pathological platelets clearly indicated that ER stress occurs transiently during thrombopoiesis. Direct ER stress induction by tunicamycin, an inhibitor of N-glycosylation, or by sarco/endoplasmic reticulum Ca(2+) ATPase type 3b overexpression, which interferes with reticular calcium, leads to some degree of maturation in megakaryocytic cell lines. On the contrary, exposure to salubrinal, a phosphatase inhibitor that prevents eukaryotic translation initiation factor 2α-P dephosphorylation and inhibits ER stress-induced apoptosis, decreased both expression of maturation markers in MEG-01 and CD34(+) cells as well as numbers of mature megakaryocytes and proplatelet formation in cultured CD34(+) cells. CONCLUSIONS: Taken as a whole, our research suggests that transient ER stress activation triggers the apoptotic-like phase of the thrombopoiesis process.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/metabolismo , Trombopoyesis , Antígenos CD34/metabolismo , Apoptosis , Biomarcadores/metabolismo , Línea Celular , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Humanos , Megacariocitos/efectos de los fármacos , Megacariocitos/patología , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Trombopoyesis/efectos de los fármacos , Factores de Tiempo , Transfección
16.
Blood ; 118(24): 6310-20, 2011 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21725049

RESUMEN

RUNX1 encodes a DNA-binding α subunit of the core-binding factor, a heterodimeric transcription factor. RUNX1 is a master regulatory gene in hematopoiesis and its disruption is one of the most common aberrations in acute leukemia. Inactivating or dominant-negative mutations in the RUNX1 gene have been also identified in pedigrees of familial platelet disorders with a variable propensity to develop acute myeloid leukemia (FPD/AML). We performed analysis of hematopoiesis from 2 FPD/AML pedigrees with 2 distinct RUNX1 germline mutations, that is, the R139X in a pedigree without AML and the R174Q mutation in a pedigree with AML. Both mutations induced a marked increase in the clonogenic potential of immature CD34(+)CD38(-) progenitors, with some self-renewal capacities observed only for R174Q mutation. This increased proliferation correlated with reduction in the expression of NR4A3, a gene previously implicated in leukemia development. We demonstrated that NR4A3 was a direct target of RUNX1 and that restoration of NR4A3 expression partially reduced the clonogenic potential of patient progenitors. We propose that the down-regulation of NR4A3 in RUNX1-mutated hematopoietic progenitors leads to an increase in the pool of cells susceptible to be hit by secondary leukemic genetic events.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Hematopoyesis , Leucemia Mieloide Aguda/genética , Deficiencia de Almacenamiento del Pool Plaquetario/genética , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Adolescente , Adulto , Animales , Proliferación Celular , Células Cultivadas , Células Clonales/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/fisiopatología , Masculino , Ratones , Persona de Mediana Edad , Mutación , Linaje , Deficiencia de Almacenamiento del Pool Plaquetario/metabolismo , Deficiencia de Almacenamiento del Pool Plaquetario/fisiopatología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/trasplante , Adulto Joven
17.
Blood ; 118(22): 5928-37, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21960593

RESUMEN

Filaminopathies A caused by mutations in the X-linked FLNA gene are responsible for a wide spectrum of rare diseases including 2 main phenotypes, the X-linked dominant form of periventricular nodular heterotopia (FLNA-PVNH) and the otopalatodigital syndrome spectrum of disorders. In platelets, filamin A (FLNa) tethers the principal receptors ensuring the platelet-vessel wall interaction, glycoprotein Ibα and integrin αIIbß3, to the underlying cytoskeleton. Hemorrhage, coagulopathy, and thrombocytopenia are mentioned in several reports on patients with FLNA-PVNH. Abnormal platelet morphology in 2 patients with FLNA-PVNH prompted us to examine a third patient with similar platelet morphology previously diagnosed with immunologic thrombocytopenic purpura. Her enlarged platelets showed signs of FLNa degradation in Western blotting, and a heterozygous missense mutation in FLNA was detected. An irregular distribution of FLNa within the total platelet population was shown by confocal microscopy for all 3 patients. In vitro megakaryocyte cultures showed an abnormal differentiation, including an irregular distribution of FLNa with a frayed aspect, the presence of enlarged α-granules, and an abnormal fragmentation of the cytoplasm. Mutations in FLNA may represent an unrecognized cause of macrothrombocytopenia with an altered platelet production and a modified platelet-vessel wall interaction.


Asunto(s)
Proteínas Contráctiles/genética , Proteínas de Microfilamentos/genética , Mutación , Trombocitopenia/clasificación , Trombocitopenia/genética , Anciano , Células Cultivadas , Femenino , Filaminas , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Mutación/fisiología , Recuento de Plaquetas , Síndrome , Trombocitopenia/sangre , Trombocitopenia/diagnóstico
18.
Blood ; 116(13): 2345-55, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20548097

RESUMEN

Polyploidization of megakaryocytes (MKs), the platelet precursors, occurs by endomitosis, a mitotic process that fails at late stages of cytokinesis. Expression and function of Aurora B kinase during endomitosis remain controversial. Here, we report that Aurora B is normally expressed during the human MK endomitotic process. Aurora B localized normally in the midzone or midbody during anaphase and telophase in low ploidy megakaryocytes and in up to 16N rare endomitotic MKs was observed. Aurora B was also functional during cytokinesis as attested by phosphorylation of both its activation site and MgcRacGAP, its main substrate. However, despite its activation, Aurora B did not prevent furrow regression. Inhibition of Aurora B by AZD1152-HQPA decreased cell cycle entry both in 2N to 4N and polyploid MKs and induced apoptosis mainly in 2N to 4N cells. In both MK classes, AZD1152-HQPA induced p53 activation and retinoblastoma hypophosphorylation. Resistance of polyploid MKs to apoptosis correlated to a high BclxL level. Aurora B inhibition did not impair MK polyploidization but profoundly modified the endomitotic process by inducing a mis-segregation of chromosomes and a mitotic failure in anaphase. This indicates that Aurora B is dispensable for MK polyploidization but is necessary to achieve a normal endomitotic process.


Asunto(s)
Megacariocitos/citología , Megacariocitos/enzimología , Mitosis/genética , Mitosis/fisiología , Poliploidía , Proteínas Serina-Treonina Quinasas/fisiología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Aurora Quinasa B , Aurora Quinasas , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/fisiología , Fase G1/efectos de los fármacos , Fase G1/fisiología , Humanos , Técnicas In Vitro , Proteínas Inhibidoras de la Apoptosis , Megacariocitos/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Fase S/efectos de los fármacos , Fase S/fisiología , Huso Acromático/enzimología , Survivin
19.
J Clin Invest ; 132(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35587378

RESUMEN

Acute megakaryoblastic leukemia of Down syndrome (DS-AMKL) is a model of clonal evolution from a preleukemic transient myeloproliferative disorder requiring both a trisomy 21 (T21) and a GATA1s mutation to a leukemia driven by additional driver mutations. We modeled the megakaryocyte differentiation defect through stepwise gene editing of GATA1s, SMC3+/-, and MPLW515K, providing 20 different T21 or disomy 21 (D21) induced pluripotent stem cell (iPSC) clones. GATA1s profoundly reshaped iPSC-derived hematopoietic architecture with gradual myeloid-to-megakaryocyte shift and megakaryocyte differentiation alteration upon addition of SMC3 and MPL mutations. Transcriptional, chromatin accessibility, and GATA1-binding data showed alteration of essential megakaryocyte differentiation genes, including NFE2 downregulation that was associated with loss of GATA1s binding and functionally involved in megakaryocyte differentiation blockage. T21 enhanced the proliferative phenotype, reproducing the cellular and molecular abnormalities of DS-AMKL. Our study provides an array of human cell-based models revealing individual contributions of different mutations to DS-AMKL differentiation blockage, a major determinant of leukemic progression.


Asunto(s)
Síndrome de Down , Leucemia Megacarioblástica Aguda , Proteínas de Ciclo Celular/genética , Niño , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Down/genética , Factor de Transcripción GATA1/genética , Hematopoyesis , Humanos , Leucemia Megacarioblástica Aguda/complicaciones , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/metabolismo , Megacariocitos/metabolismo , Mutación , Trisomía
20.
Blood ; 114(8): 1506-17, 2009 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-19478046

RESUMEN

The megakaryocytic (MK) and erythroid lineages are tightly associated during differentiation and are generated from a bipotent megakaryocyte-erythroid progenitor (MEP). In the mouse, a primitive MEP has been demonstrated in the yolk sac. In human, it is not known whether the primitive MK and erythroid lineages are generated from a common progenitor or independently. Using hematopoietic differentiation of human embryonic stem cells on the OP9 cell line, we identified a primitive MEP in a subset of cells coexpressing glycophorin A (GPA) and CD41 from day 9 to day 12 of coculturing. This MEP differentiates into primitive erythroid (GPA(+)CD41(-)) and MK (GPA(-)CD41(+)) lineages. In contrast to erythropoietin (EPO)-dependent definitive hematopoiesis, KIT was not detected during erythroid differentiation. A molecular signature for the commitment and differentiation toward both the erythroid and MK lineages was detected by assessing expression of transcription factors, thrombopoietin receptor (MPL) and erythropoietin receptor (EPOR). We showed an inverse correlation between FLI1 and both KLF1 and EPOR during primitive erythroid and MK differentiation, similar to definitive hematopoiesis. This novel MEP differentiation system may allow an in-depth exploration of the molecular bases of erythroid and MK commitment and differentiation.


Asunto(s)
Células Madre Embrionarias/fisiología , Células Eritroides , Hematopoyesis/fisiología , Células Progenitoras de Megacariocitos y Eritrocitos/fisiología , Megacariocitos/fisiología , Animales , Antígenos CD34/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Células Cultivadas , Técnicas de Cocultivo , Células Madre Embrionarias/metabolismo , Células Eritroides/citología , Células Eritroides/metabolismo , Glicoforinas/metabolismo , Humanos , Leucosialina/metabolismo , Células Progenitoras de Megacariocitos y Eritrocitos/metabolismo , Megacariocitos/metabolismo , Ratones , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA