Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37562403

RESUMEN

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Asunto(s)
Briófitas , Cambio Climático , Ecosistema , Aclimatación , Adaptación Fisiológica , Tibet , Briófitas/fisiología
2.
Am J Hum Genet ; 109(5): 928-943, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35397207

RESUMEN

Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden. We performed massively parallel sequencing by using cohorts of genetically unsolved individuals with unexplained liver and kidney failure and correlated this with clinical, imaging, and histopathological analyses. Mechanistic studies were conducted with a vertebrate model and primary cells. We detected bi-allelic deleterious variants in TULP3, encoding a critical adaptor protein for ciliary trafficking, in a total of 15 mostly adult individuals, originating from eight unrelated families, with progressive degenerative liver fibrosis, fibrocystic kidney disease, and hypertrophic cardiomyopathy with atypical fibrotic patterns on histopathology. We recapitulated the human phenotype in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals. Further, we show interaction between TULP3 and the nuclear deacetylase SIRT1, with roles in DNA damage repair and fibrosis, and report increased DNA damage ex vivo. Transcriptomic studies demonstrated upregulation of profibrotic pathways with gene clusters for hypertrophic cardiomyopathy and WNT and TGF-ß signaling. These findings identify variants in TULP3 as a monogenic cause for progressive degenerative disease of major organs in which affected individuals benefit from early detection and improved clinical management. Elucidation of mechanisms crucial for DNA damage repair and tissue maintenance will guide novel therapeutic avenues for this and similar genetic and non-genomic diseases.


Asunto(s)
Cardiomiopatía Hipertrófica , Cilios , Adulto , Animales , Cardiomiopatía Hipertrófica/metabolismo , Niño , Cilios/genética , Cilios/metabolismo , Fibrosis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón , Hígado , Mutación/genética , Pez Cebra/genética
3.
Hum Mol Genet ; 31(14): 2295-2306, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137054

RESUMEN

Mutations in genes that lead to dysfunctional cilia can cause a broad spectrum of human disease phenotypes referred to as ciliopathies. Many ciliopathy-associated proteins are localized to the evolutionary conserved ciliary transition zone (TZ) subdomain. We identified biallelic missense and nonsense mutations in the gene encoding the transmembrane protein TMEM218 in unrelated patients with features related to Bardet-Biedl, Joubert and Meckel-Gruber syndrome (MKS) and characterized TMEM218 as a major component of the ciliary TZ module. Co-immunoprecipitation assays resulted in the physical interaction of TMEM218 with the MKS module member TMEM67/Meckelin that was significantly reduced by the TMEM218 missense change harboured by one of our patients. We could further validate its pathogenicity by functional in vivo analysis in zebrafish (Danio rerio) as a well-established vertebrate model for ciliopathies. Notably, ciliopathy-related phenotypes were most prominent by genetic interactions with the NPHP module component Nphp4. Conclusively, we describe TMEM218 as a new disease gene for patients with a wide spectrum of syndromic ciliopathy phenotypes and provide evidence for a synergistic interaction of TMEM218 and the NPHP module crucial for proper ciliary function.


Asunto(s)
Anomalías Múltiples , Ciliopatías , Enfermedades Renales Poliquísticas , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Animales , Caenorhabditis elegans/genética , Cilios/genética , Cilios/metabolismo , Trastornos de la Motilidad Ciliar , Ciliopatías/genética , Ciliopatías/metabolismo , Encefalocele , Humanos , Mutación , Enfermedades Renales Poliquísticas/genética , Retinitis Pigmentosa , Pez Cebra/genética
4.
Plant Cell Rep ; 43(2): 43, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246952

RESUMEN

KEY MESSAGE: Characterization of Physcomitrella 3'UTRs across different promoters yields endogenous single and double terminators for usage in molecular pharming. The production of recombinant proteins for health applications accounts for a large share of the biopharmaceutical market. While many drugs are produced in microbial and mammalian systems, plants gain more attention as expression hosts to produce eukaryotic proteins. In particular, the good manufacturing practice (GMP)-compliant moss Physcomitrella (Physcomitrium patens) has outstanding features, such as excellent genetic amenability, reproducible bioreactor cultivation, and humanized protein glycosylation patterns. In this study, we selected and characterized novel terminators for their effects on heterologous gene expression. The Physcomitrella genome contains 53,346 unique 3'UTRs (untranslated regions) of which 7964 transcripts contain at least one intron. Over 91% of 3'UTRs exhibit more than one polyadenylation site, indicating the prevalence of alternative polyadenylation in Physcomitrella. Out of all 3'UTRs, 14 terminator candidates were selected and characterized via transient Dual-Luciferase assays, yielding a collection of endogenous terminators performing equally high as established heterologous terminators CaMV35S, AtHSP90, and NOS. High performing candidates were selected for testing as double terminators which impact reporter levels, dependent on terminator identity and positioning. Testing of 3'UTRs among the different promoters NOS, CaMV35S, and PpActin5 showed an increase of more than 1000-fold between promoters PpActin5 and NOS, whereas terminators increased reporter levels by less than tenfold, demonstrating the stronger effect promoters play as compared to terminators. Among selected terminator attributes, the number of polyadenylation sites as well as polyadenylation signals were found to influence terminator performance the most. Our results improve the biotechnology platform Physcomitrella and further our understanding of how terminators influence gene expression in plants in general.


Asunto(s)
Briófitas , Bryopsida , Animales , Bryopsida/genética , Regiones no Traducidas 3' , Agricultura Molecular , Expresión Génica , Mamíferos
5.
Mol Plant Microbe Interact ; 36(11): 682-692, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37486175

RESUMEN

Oxidative burst, the rapid production of high levels of reactive oxygen species in response to external stimuli, is an early defense reaction against pathogens. The fungal elicitor chitosan causes an oxidative burst in the moss Physcomitrium patens (formerly Physcomitrella patens), mainly due to the peroxidase enzyme Prx34. To better understand the chitosan responses in P. patens, we conducted a screen of part of a P. patens mutant collection to isolate plants with less peroxidase activity than wild-type (WT) plants after chitosan treatment. We isolated a P. patens mutant that affected the gene encoding NAD(P)-binding Rossmann fold protein (hereafter, Rossmann fold protein). Three Rossmann fold protein-knockout (KO) plants (named Rossmann fold KO lines) were generated and used to assess extracellular peroxidase activity and expression of defense-responsive genes, including alternative oxidase, lipoxygenase (LOX), NADPH oxidase, and peroxidase (Prx34) in response to chitosan treatment. Extracellular (apoplastic) peroxidase activity was significantly lower in Rossmann fold KO lines than in WT plants after chitosan treatments. Expression of the LOX gene in Rossmann fold KO plants was significantly lower before and after chitosan treatment when compared with WT. Peroxidase activity assays together with gene expression analyses suggest that the Rossmann fold protein might be an important component of the signaling pathway leading to oxidative burst and basal expression of the LOX gene in P. patens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Bryopsida , Quitosano , Lipooxigenasa/genética , Quitosano/farmacología , NAD , Bryopsida/genética , Peroxidasas/genética , Peroxidasa/genética , Peroxidasa/metabolismo , Plantas/metabolismo
6.
New Phytol ; 237(6): 2118-2135, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696950

RESUMEN

The auxin efflux PIN-FORMED (PIN) proteins are conserved in all land plants and important players in plant development. In the moss Physcomitrella (Physcomitrium patens), three canonical PINs (PpPINA-C) are expressed in the leafy shoot (gametophore). PpPINA and PpPINB show functional activity in vegetative growth and sporophyte development. Here, we examined the role of PpPINC in the life cycle of Physcomitrella. We established reporter and knockout lines for PpPINC and analysed vegetative and reproductive tissues using microscopy and transcriptomic sequencing of moss gametangia. PpPINC is expressed in immature leaves, mature gametangia and during sporophyte development. The sperm cells (spermatozoids) of pinC knockout mutants exhibit increased motility and an altered flagella phenotype. Furthermore, the pinC mutants have a higher portion of differentially expressed genes related to spermatogenesis, increased fertility and an increased abortion rate of premeiotic sporophytes. Here, we show that PpPINC is important for spermatogenesis and sporophyte retention. We propose an evolutionary conserved way of polar growth during early moss embryo development and sporophyte attachment to the gametophore while suggesting the mechanical function in sporophyte retention of a ring structure, the Lorch ring.


Asunto(s)
Briófitas , Bryopsida , Bryopsida/metabolismo , Semillas/metabolismo , Briófitas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espermatogénesis
7.
Plant Cell Rep ; 41(1): 153-173, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34636965

RESUMEN

KEY MESSAGE: In Physcomitrella, whole-genome duplications affected the expression of about 3.7% of the protein-encoding genes, some of them relevant for DNA repair, resulting in a massively reduced gene-targeting frequency. Qualitative changes in gene expression after an autopolyploidization event, a pure duplication of the whole genome (WGD), might be relevant for a different regulation of molecular mechanisms between angiosperms growing in a life cycle with a dominant diploid sporophytic stage and the haploid-dominant mosses. Whereas angiosperms repair DNA double-strand breaks (DSB) preferentially via non-homologous end joining (NHEJ), in the moss Physcomitrella homologous recombination (HR) is the main DNA-DSB repair pathway. HR facilitates the precise integration of foreign DNA into the genome via gene targeting (GT). Here, we studied the influence of ploidy on gene expression patterns and GT efficiency in Physcomitrella using haploid plants and autodiploid plants, generated via an artificial WGD. Single cells (protoplasts) were transfected with a GT construct and material from different time-points after transfection was analysed by microarrays and SuperSAGE sequencing. In the SuperSAGE data, we detected 3.7% of the Physcomitrella genes as differentially expressed in response to the WGD event. Among the differentially expressed genes involved in DNA-DSB repair was an upregulated gene encoding the X-ray repair cross-complementing protein 4 (XRCC4), a key player in NHEJ. Analysing the GT efficiency, we observed that autodiploid plants were significantly GT suppressed (p < 0.001) attaining only one third of the expected GT rates. Hence, an alteration of global transcript patterns, including genes related to DNA repair, in autodiploid Physcomitrella plants correlated with a drastic suppression of HR.


Asunto(s)
Bryopsida/genética , Marcación de Gen , Poliploidía , Transcripción Genética
8.
New Phytol ; 229(2): 861-876, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910470

RESUMEN

Sphagnum farming can substitute peat with renewable biomass and thus help mitigate climate change. Large volumes of the required founder material can only be supplied sustainably by axenic cultivation in bioreactors. We established axenic in vitro cultures from sporophytes of 19 Sphagnum species collected in Austria, Germany, Latvia, the Netherlands, Russia, and Sweden: S. angustifolium, S. balticum, S. capillifolium, S. centrale, S. compactum, S. cuspidatum, S. fallax, S. fimbriatum, S. fuscum, S. lindbergii, S. medium/divinum, S. palustre, S. papillosum, S. rubellum, S. russowii, S. squarrosum, S. subnitens, S. subfulvum and S. warnstorfii. These species cover five of the six European Sphagnum subgenera; namely, Acutifolia, Cuspidata, Rigida, Sphagnum and Squarrosa. Their growth was measured in suspension cultures, whereas their ploidy was determined by flow cytometry and compared with the genome size of Physcomitrella patens. We identified haploid and diploid Sphagnum species, found that their cells are predominantly arrested in the G1 phase of the cell cycle, and did not find a correlation between plant productivity and ploidy. DNA barcoding was achieved by sequencing introns of the BRK1 genes. With this collection, high-quality founder material for diverse large-scale applications, but also for basic Sphagnum research, is available from the International Moss Stock Center.


Asunto(s)
Sphagnopsida , Austria , Biología , Biotecnología , Alemania , Federación de Rusia , Suecia
9.
Plant Cell ; 30(3): 717-736, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29514942

RESUMEN

RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in RecQ genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on Arabidopsis thaliana and Physcomitrella patens, the model species predominantly used for studies on DNA repair and gene targeting. Phylogenetic analysis of the six P. patens RecQ genes revealed their orthologs in humans and plants. Because Arabidopsis and P. patens differ in their RecQ4 and RecQ6 genes, reporter and deletion moss mutants were generated and gene functions studied in reciprocal cross-species and cross-kingdom approaches. Both proteins can be found in meristematic moss tissues, although at low levels and with distinct expression patterns. PpRecQ4 is involved in embryogenesis and in subsequent development as demonstrated by sterility of ΔPpRecQ4 mutants and by morphological aberrations. Additionally, ΔPpRecQ4 displays an increased sensitivity to DNA damages and an increased rate of gene targeting. Therefore, we conclude that PpRecQ4 acts as a repressor of recombination. In contrast, PpRecQ6 is not obviously important for moss development or DNA repair but does function as a potent enhancer of gene targeting.


Asunto(s)
Arabidopsis/metabolismo , Bryopsida/metabolismo , Reparación del ADN/genética , Proteínas de Plantas/metabolismo , RecQ Helicasas/metabolismo , Arabidopsis/genética , Bryopsida/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/genética , RecQ Helicasas/genética
10.
Hum Mutat ; 41(12): 2179-2194, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33131181

RESUMEN

Ciliopathies are clinically and genetically heterogeneous diseases. We studied three patients from two independent families presenting with features of Joubert syndrome: abnormal breathing pattern during infancy, developmental delay/intellectual disability, cerebellar ataxia, molar tooth sign on magnetic resonance imaging scans, and polydactyly. We identified biallelic loss-of-function (LOF) variants in CBY1, segregating with the clinical features of Joubert syndrome in the families. CBY1 localizes to the distal end of the mother centriole, contributing to the formation and function of cilia. In accordance with the clinical and mutational findings in the affected individuals, we demonstrated that depletion of Cby1 in zebrafish causes ciliopathy-related phenotypes. Levels of CBY1 transcript were found reduced in the patients compared with controls, suggesting degradation of the mutated transcript through nonsense-mediated messenger RNA decay. Accordingly, we could detect CBY1 protein in fibroblasts from controls, but not from patients by immunofluorescence. Furthermore, we observed reduced ability to ciliate, increased ciliary length, and reduced levels of the ciliary proteins AHI1 and ARL13B in patient fibroblasts. Our data show that CBY1 LOF-variants cause a ciliopathy with features of Joubert syndrome.


Asunto(s)
Anomalías Múltiples/genética , Proteínas Portadoras/genética , Cerebelo/anomalías , Ciliopatías/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Mutación/genética , Proteínas Nucleares/genética , Retina/anomalías , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/patología , Adolescente , Animales , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Niño , Preescolar , Cilios/metabolismo , Cilios/patología , Ciliopatías/diagnóstico por imagen , Ciliopatías/patología , Anomalías del Ojo/diagnóstico por imagen , Anomalías del Ojo/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Homocigoto , Humanos , Lactante , Recién Nacido , Enfermedades Renales Quísticas/diagnóstico por imagen , Enfermedades Renales Quísticas/patología , Imagen por Resonancia Magnética , Masculino , Linaje , Fenotipo , Retina/diagnóstico por imagen , Retina/patología , Receptor Smoothened/metabolismo , Adulto Joven , Pez Cebra/genética
11.
Plant J ; 93(3): 515-533, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29237241

RESUMEN

The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.


Asunto(s)
Evolución Biológica , Bryopsida/genética , Cromosomas de las Plantas , Genoma de Planta , Centrómero , Cromatina/genética , Metilación de ADN , Elementos Transponibles de ADN , Variación Genética , Polimorfismo de Nucleótido Simple , Recombinación Genética , Sintenía
12.
J Am Soc Nephrol ; 29(4): 1141-1153, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29335241

RESUMEN

The complement system is essential for host defense, but uncontrolled complement system activation leads to severe, mostly renal pathologies, such as atypical hemolytic uremic syndrome or C3 glomerulopathy. Here, we investigated a novel combinational approach to modulate complement activation by targeting C3 and the terminal pathway simultaneously. The synthetic fusion protein MFHR1 links the regulatory domains of complement factor H (FH) with the C5 convertase/C5b-9 inhibitory fragment of the FH-related protein 1. In vitro, MFHR1 showed cofactor and decay acceleration activity and inhibited C5 convertase activation and C5b-9 assembly, which prevented C3b deposition and reduced C3a/C5a and C5b-9 generation. Furthermore, this fusion protein showed the ability to escape deregulation by FH-related proteins and form multimeric complexes with increased inhibitory activity. In addition to substantially inhibiting alternative and classic pathway activation, MFHR1 blocked hemolysis mediated by serum from a patient with aHUS expressing truncated FH. In FH-/- mice, MFHR1 administration augmented serum C3 levels, reduced abnormal glomerular C3 deposition, and ameliorated C3 glomerulopathy. Taking the unique design of MFHR1 into account, we suggest that the combination of proximal and terminal cascade inhibition together with the ability to form multimeric complexes explain the strong inhibitory capacity of MFHR1, which offers a novel basis for complement therapeutics.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/sangre , Proteínas Sanguíneas/deficiencia , Proteínas Inactivadoras del Complemento C3b/genética , Inactivadores del Complemento/farmacología , Terapia Molecular Dirigida , Proteínas Recombinantes de Fusión/farmacología , Animales , Síndrome Hemolítico Urémico Atípico/genética , Síndrome Hemolítico Urémico Atípico/inmunología , Complemento C3/metabolismo , Convertasas de Complemento C3-C5/antagonistas & inhibidores , Convertasas de Complemento C3-C5/metabolismo , Complemento C3b/antagonistas & inhibidores , Proteínas Inactivadoras del Complemento C3b/deficiencia , Complemento C5/metabolismo , Factor H de Complemento/genética , Inactivadores del Complemento/aislamiento & purificación , Inactivadores del Complemento/uso terapéutico , Complejo de Ataque a Membrana del Sistema Complemento/biosíntesis , Vía Alternativa del Complemento , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Glomérulos Renales/química , Glomérulos Renales/patología , Ratones , Ratones Noqueados , Dominios Proteicos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/uso terapéutico
13.
Hum Mutat ; 39(7): 983-992, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29688594

RESUMEN

Ciliopathies represent a wide spectrum of rare diseases with overlapping phenotypes and a high genetic heterogeneity. Among those, IFT140 is implicated in a variety of phenotypes ranging from isolated retinis pigmentosa to more syndromic cases. Using whole-genome sequencing in patients with uncharacterized ciliopathies, we identified a novel recurrent tandem duplication of exon 27-30 (6.7 kb) in IFT140, c.3454-488_4182+2588dup p.(Tyr1152_Thr1394dup), missed by whole-exome sequencing. Pathogenicity of the mutation was assessed on the patients' skin fibroblasts. Several hundreds of patients with a ciliopathy phenotype were screened and biallelic mutations were identified in 11 families representing 12 pathogenic variants of which seven are novel. Among those unrelated families especially with a Mainzer-Saldino syndrome, eight carried the same tandem duplication (two at the homozygous state and six at the heterozygous state). In conclusion, we demonstrated the implication of structural variations in IFT140-related diseases expanding its mutation spectrum. We also provide evidences for a unique genomic event mediated by an Alu-Alu recombination occurring on a shared haplotype. We confirm that whole-genome sequencing can be instrumental in the ability to detect structural variants for genomic disorders.


Asunto(s)
Proteínas Portadoras/genética , Ataxia Cerebelosa/genética , Ciliopatías/genética , Retinitis Pigmentosa/genética , Secuenciación Completa del Genoma , Elementos Alu/genética , Ataxia Cerebelosa/patología , Ciliopatías/patología , Bases de Datos Genéticas , Exones/genética , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Mutación/genética , Linaje , Fenotipo , Retinitis Pigmentosa/patología
14.
J Proteome Res ; 17(11): 3749-3760, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30226384

RESUMEN

Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.


Asunto(s)
Proteasas de Ácido Aspártico/aislamiento & purificación , Bryopsida/enzimología , Metaloproteasas/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Inhibidores de Proteasas/aislamiento & purificación , Serpinas/aislamiento & purificación , Subtilisinas/aislamiento & purificación , Proteasas de Ácido Aspártico/clasificación , Proteasas de Ácido Aspártico/genética , Proteasas de Ácido Aspártico/metabolismo , Reactores Biológicos , Bryopsida/química , Bryopsida/genética , Biología Computacional , Técnicas de Inactivación de Genes , Espectrometría de Masas/métodos , Metaloproteasas/clasificación , Metaloproteasas/genética , Metaloproteasas/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inhibidores de Proteasas/clasificación , Inhibidores de Proteasas/metabolismo , Análisis por Matrices de Proteínas , Proteolisis , Serpinas/clasificación , Serpinas/genética , Serpinas/metabolismo , Subtilisinas/clasificación , Subtilisinas/genética , Subtilisinas/metabolismo
15.
Am J Med Genet A ; 176(2): 438-442, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29271569

RESUMEN

Ciliopathies are disorders of the primary cilium that can affect almost all organs and that are characterized by pleiotropy and extensive intra- and interfamilial phenotypic variability. Accordingly, mutations in the same gene can cause different ciliopathy phenotypes of varying severity. WDR60 encodes a protein thought to play a role in the primary cilium's intraflagellar transport machinery. Mutations in this gene are a rare cause of Jeune asphyxiating thoracic dystrophy (JATD) and short-rib polydactyly syndrome (SRPS). Here we report on a milder and distinct phenotype in a consanguineous Pakistani pedigree with two adolescent sisters affected by retinal degeneration and postaxial polydactyly, but lack of any further skeletal or chondrodysplasia features. By targeted high-throughput sequencing of genes known or suspected to be involved in ciliogenesis, we detected a novel homozygous N-terminal truncating WDR60 mutation (c.44delC/p.Ala15Glufs*90) that co-segregated with the disease in the family. Our finding broadens the spectrum of WDR60-related phenotypes and shows the utility of broad multigene panels during the genetic work-up of patients with ciliopathies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Polidactilia/genética , Degeneración Retiniana/genética , Síndrome de Costilla Pequeña y Polidactilia/genética , Adolescente , Adulto , Cilios/genética , Cilios/patología , Ciliopatías/genética , Ciliopatías/fisiopatología , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/fisiopatología , Exoma/genética , Femenino , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Polidactilia/fisiopatología , Degeneración Retiniana/fisiopatología , Costillas/fisiopatología , Síndrome de Costilla Pequeña y Polidactilia/fisiopatología , Hermanos , Adulto Joven
16.
J Am Soc Nephrol ; 28(5): 1462-1474, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27932477

RESUMEN

Genetic defects in complement regulatory proteins can lead to severe renal diseases, including atypical hemolytic uremic syndrome and C3 glomerulopathies, and age-related macular degeneration. The majority of the mutations found in patients with these diseases affect the glycoprotein complement factor H, the main regulator of the alternative pathway of complement activation. Therapeutic options are limited, and novel treatments, specifically those targeting alternative pathway activation, are highly desirable. Substitution with biologically active factor H could potentially treat a variety of diseases that involve increased alternative pathway activation, but no therapeutic factor H is commercially available. We recently reported the expression of full-length recombinant factor H in moss (Physcomitrella patens). Here, we present the production of an improved moss-derived recombinant human factor H devoid of potentially immunogenic plant-specific sugar residues on protein N-glycans, yielding approximately 1 mg purified moss-derived human factor H per liter of initial P. patens culture after a multistep purification process. This glycosylation-optimized factor H showed full in vitro complement regulatory activity similar to that of plasma-derived factor H and efficiently blocked LPS-induced alternative pathway activation and hemolysis induced by sera from patients with atypical hemolytic uremic syndrome. Furthermore, injection of moss-derived factor H reduced C3 deposition and increased serum C3 levels in a murine model of C3 glomerulopathy. Thus, we consider moss-produced recombinant human factor H a promising pharmaceutical product for therapeutic intervention in patients suffering from complement dysregulation.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Bryopsida , Proteínas del Sistema Complemento , Enfermedades del Sistema Inmune/tratamiento farmacológico , Animales , Bryopsida/metabolismo , Factor H de Complemento/biosíntesis , Factor H de Complemento/metabolismo , Factor H de Complemento/uso terapéutico , Glicosilación , Humanos , Ratones
17.
Biochim Biophys Acta ; 1859(7): 860-70, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27179444

RESUMEN

Packaging of eukaryotic DNA largely depends on histone modifications that affect the accessibility of DNA to transcriptional regulators, thus controlling gene expression. The Polycomb group (PcG) chromatin remodeling complex deposits a methyl group on lysine 27 of histone 3 leading to repressed gene expression. Plants encode homologs of the Enhancer of zeste (E(z)), a component of the PcG complex from Drosophila, one of which is a SET domain protein designated CURLY LEAF (CLF). Although this SET domain protein exhibits a strong correlation with the presence of the H3K27me3 mark in plants, the methyl-transferase activity and specificity of its SET domain have not been directly tested in-vivo. Using the evolutionary early-diverged land plant model species Physcomitrella patens we show that abolishment of a single copy gene PpCLF, as well as an additional member of the PcG complex, FERTILIZATION-INDEPENDENT ENDOSPERM (PpFIE), results in a specific loss of tri-methylation of H3K27. Using site-directed mutagenesis of key residues, we revealed that H3K27 tri-methylation is mediated by the SET domain of the CLF protein. Moreover, the abolishment of H3K27me3 led to enhanced expression of transcription factor genes. This in turn led to the development of fertilization-independent sporophyte-like structures, as observed in PpCLF and PpFIE null mutants. Overall, our results demonstrate the role of PpCLF as a SET protein in tri-methylation of H3K27 in-vivo and the importance of this modification in regulating the expression of transcription factor genes involved in developmental programs of P. patens.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Proteínas del Grupo Polycomb/fisiología , Secuencia de Aminoácidos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Proteínas de Homeodominio/fisiología , Lisina/metabolismo , Metilación , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido
18.
New Phytol ; 216(2): 455-468, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28262967

RESUMEN

In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-ß-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues.


Asunto(s)
Evolución Biológica , Bryopsida/microbiología , Bryopsida/fisiología , Resistencia a la Enfermedad , Lactonas/metabolismo , Fosfatos/deficiencia , Enfermedades de las Plantas/microbiología , Carotenoides/química , Cromatografía Líquida de Alta Presión , Dioxigenasas/metabolismo , Susceptibilidad a Enfermedades , Técnicas de Inactivación de Genes , Germinación , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Mutación/genética , Proteínas de Plantas/metabolismo , Estereoisomerismo
19.
Plant J ; 79(3): 530-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24889180

RESUMEN

The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Transcriptoma/genética , Bryopsida/fisiología , Perfilación de la Expresión Génica , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Plant Biotechnol J ; 13(8): 1191-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26011014

RESUMEN

Over the past two decades, the moss Physcomitrella patens has been developed from scratch to a model species in basic research and in biotechnology. A fully sequenced genome, outstanding possibilities for precise genome-engineering via homologous recombination (knockout moss), a certified GMP production in moss bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein glycosylation, remarkable batch-to-batch stability and a safe cryopreservation for master cell banking are some of the key features of the moss system. Several human proteins are being produced in this system as potential biopharmaceuticals. Among the products are tumour-directed monoclonal antibodies with enhanced antibody-dependent cytotoxicity (ADCC), vascular endothelial growth factor (VEGF), complement factor H (FH), keratinocyte growth factor (FGF7/KGF), epidermal growth factor (EGF), hepatocyte growth factor (HGF), asialo-erythropoietin (asialo-EPO, AEPO), alpha-galactosidase (aGal) and beta-glucocerebrosidase (GBA). Further, an Env-derived multi-epitope HIV protein as a candidate vaccine was produced, and first steps for a metabolic engineering of P. patens have been made. Some of the recombinant biopharmaceuticals from moss bioreactors are not only similar to those produced in mammalian systems such as CHO cells, but are of superior quality (biobetters). The first moss-made pharmaceutical, aGal to treat Morbus Fabry, is in clinical trials.


Asunto(s)
Briófitas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Investigación Biomédica Traslacional , Biotecnología , Humanos , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA