RESUMEN
Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year's senescence and next year's leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter-spring 2009-2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species.
Asunto(s)
Hojas de la Planta/fisiología , Estaciones del Año , Árboles/fisiología , Clima , Frío , Ecosistema , Fagus/fisiología , Genotipo , Calentamiento Global , Modelos Lineales , Fenómenos Fisiológicos de las Plantas , Quercus/fisiología , Especificidad de la Especie , TemperaturaRESUMEN
For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'. To resolve these matters, this study quantifies the environmental impact (on human health, natural systems and natural resources) in physical units and uses an ecosystem service valuation based on monetary values (including ecosystem disservices with associated negative monetary values). More specifically, the paper also focuses on the assessment of ecosystem services related to pollutant removal/generation flows, accounting for the inflow of eutrophying nitrogen (N) when assessing the effect of N leached to groundwater. Regarding water use/provisioning, evapotranspiration is alternatively considered a disservice because it implies a loss of (potential) groundwater. These approaches and improvements, relevant to all ecosystems, are demonstrated using a Scots pine stand from 2010 to 2089 for a combination of three environmental change and three management scenarios. The environmental change scenarios considered interannual climate variability trends and included alterations in temperature, precipitation, nitrogen deposition, wind speed, Particulate matter (PM) concentration and CO2 concentration. The addressed flows/ecosystem services, including disservices, are as follows: particulate matter removal, freshwater loss, CO2 sequestration, wood production, NOx emissions, NH3 uptake and nitrogen pollution/removal. The monetary ecosystem service valuation yields a total average estimate of 361-1242 euro ha(-1) yr(-1). PM2.5 (<2.5 µm) removal is the key service, with a projected value of 622-1172 euro ha(-1) yr(-1). Concerning environmental impact assessment, with net CO2 uptake being the most relevant contributing flow, a loss prevention of 0.014-0.029 healthy life years ha(-1) yr(-1) is calculated for the respective flows. Both assessment methods favor the use of the least intensive management scenario due to its resulting higher CO2 sequestration and PM removal, which are the most important services of the considered ones.
Asunto(s)
Conservación de los Recursos Naturales/economía , Ecosistema , Ambiente , Bosques , Pinus , Dióxido de Carbono/química , Clima , Contaminantes Ambientales/análisis , Agua Dulce , Nitrógeno , Material Particulado/análisis , Suelo/químicaRESUMEN
Airborne fine particulate matter (PM) is responsible for the most severe health effects induced by air pollution in Europe. Vegetation, and forests in particular, can play a role in mitigating this pollution since they have a large surface area to filter PM out of the air. Many studies have solely focused on dry deposition of PM onto the tree surface, but deposited PM can be resuspended to the air or may be washed off by precipitation dripping from the plants to the soil. It is only the latter process that represents a net-removal from the atmosphere. To quantify this removal all these processes should be accounted for, which is the case in our modeling framework. Practically, a multilayered PM removal model for forest canopies is developed. In addition, the framework has been integrated into an existing forest growth model in order to account for changes in PM removal efficiency during forest growth. A case study was performed on a Scots pine stand in Belgium (Europe), resulting for 2010 in a dry deposition of 31 kg PM2.5 (PM < 2.5 µm) ha(-1) yr(-1) from which 76% was resuspended and 24% washed off. For different future emission reduction scenarios from 2010 to 2030, with altering PM2.5 air concentration, the avoided health costs due to PM2.5 removal was estimated to range from 915 to 1075 euro ha(-1) yr(-1). The presented model could even be used to predict nutrient input via particulate matter though further research is needed to improve and better validate the model.
Asunto(s)
Contaminantes Atmosféricos/aislamiento & purificación , Bosques , Modelos Teóricos , Material Particulado/aislamiento & purificación , Plantas/metabolismo , Lluvia , Salud , Factores de Tiempo , Árboles/metabolismoRESUMEN
⢠Increasing atmospheric concentrations of phytotoxic ozone (O(3) ) can constrain growth and carbon sink strength of forest trees, potentially exacerbating global radiative forcing. Despite progress in the conceptual understanding of the impact of O(3) on plants, it is still difficult to detect response patterns at the leaf level. ⢠Here, we employed principal component analysis (PCA) to analyse a database containing physiological leaf-level parameters of 60-yr-old Fagus sylvatica (European beech) trees. Data were collected over two climatically contrasting years under ambient and twice-ambient O(3) regimes in a free-air forest environment. ⢠The first principal component (PC1) of the PCA was consistently responsive to O(3) and crown position within the trees over both years. Only a few of the original parameters showed an O(3) effect. PC1 was related to parameters indicative of oxidative stress signalling and changes in carbohydrate metabolism. PC1 correlated with cumulative O(3) uptake over preceding days. ⢠PC1 represents an O(3) -responsive multivariate pattern detectable in the absence of consistently measurable O(3) effects on individual leaf-level parameters. An underlying effect of O(3) on physiological processes is indicated, providing experimental confirmation of theoretical O(3) response patterns suggested previously.
Asunto(s)
Fagus/efectos de los fármacos , Fagus/fisiología , Ozono/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Análisis de Varianza , Europa (Continente) , Fagus/crecimiento & desarrollo , Conceptos Meteorológicos , Análisis Multivariante , Ozono/metabolismo , Análisis de Componente Principal , Estaciones del AñoRESUMEN
Numerous phenology models developed to predict the budburst date of trees have been merged into one Unified model (Chuine, 2000, J. Theor. Biol. 207, 337-347). In this study, we tested a simplified version of the Unified model (Unichill model) on six woody species. Budburst and temperature data were available for five sites across Belgium from 1957 to 1995. We calibrated the Unichill model using a Bayesian calibration procedure, which reduced the uncertainty of the parameter coefficients and quantified the prediction uncertainty. The model performance differed among species. For two species (chestnut and black locust), the model showed good performance when tested against independent data not used for calibration. For the four other species (beech, oak, birch, ash), the model performed poorly. Model performance improved substantially for most species when using site-specific parameter coefficients instead of across-site parameter coefficients. This suggested that budburst is influenced by local environment and/or genetic differences among populations. Chestnut, black locust and birch were found to be temperature-driven species, and we therefore analyzed the sensitivity of budburst date to forcing temperature in those three species. Model results showed that budburst advanced with increasing temperature for 1-3 days °C(-1), which agreed with the observed trends. In synthesis, our results suggest that the Unichill model can be successfully applied to chestnut and black locust (with both across-site and site-specific calibration) and to birch (with site-specific calibration). For other species, temperature is not the only determinant of budburst and additional influencing factors will need to be included in the model.
Asunto(s)
Flores/fisiología , Magnoliopsida/fisiología , Modelos Biológicos , Teorema de Bayes , Bélgica , Clima , Temperatura , Árboles/fisiologíaRESUMEN
Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.
Asunto(s)
Cambio Climático , Ecosistema , Carbono , PlantasRESUMEN
New knowledge on soil structure highlights its importance for hydrology and soil organic matter (SOM) stabilization, which however remains neglected in many wide used models. We present here a new model, KEYLINK, in which soil structure is integrated with the existing concepts on SOM pools, and elements from food web models, that is, those from direct trophic interactions among soil organisms. KEYLINK is, therefore, an attempt to integrate soil functional diversity and food webs in predictions of soil carbon (C) and soil water balances. We present a selection of equations that can be used for most models as well as basic parameter intervals, for example, key pools, functional groups' biomasses and growth rates. Parameter distributions can be determined with Bayesian calibration, and here an example is presented for food web growth rate parameters for a pine forest in Belgium. We show how these added equations can improve the functioning of the model in describing known phenomena. For this, five test cases are given as simulation examples: changing the input litter quality (recalcitrance and carbon to nitrogen ratio), excluding predators, increasing pH and changing initial soil porosity. These results overall show how KEYLINK is able to simulate the known effects of these parameters and can simulate the linked effects of biopore formation, hydrology and aggregation on soil functioning. Furthermore, the results show an important trophic cascade effect of predation on the complete C cycle with repercussions on the soil structure as ecosystem engineers are predated, and on SOM turnover when predation on fungivore and bacterivore populations are reduced. In summary, KEYLINK shows how soil functional diversity and trophic organization and their role in C and water cycling in soils should be considered in order to improve our predictions on C sequestration and C emissions from soils.
RESUMEN
The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.
RESUMEN
We estimated daily use of stored water by Scots pine (Pinus sylvestris L.) trees growing in a temperate climate with the ANAFORE model (ANAlysis of FORest Ecosystems) and compared the simulation results with sap flow measurements. The original model was expanded with a dynamic water flow and storage model that simulates sap flow dynamics in an individual tree. ANAFORE was able to accurately simulate diurnal patterns of measured sap flow under microclimatic conditions that differ from those of the calibration period. Strong relationships were found between stored water use and several tree characteristics (diameter at breast height, sapwood area, leaf area), but not with tree height. Relative to transpiration, stored water use varied over time (between < 1% and 44% of daily transpiration). On days when transpiration was high, trees were more dependent on stored water, indicating that the contribution of internal water to transpiration is not a constant in the water budget of trees.
Asunto(s)
Modelos Biológicos , Pinus sylvestris/fisiología , Transpiración de Plantas/fisiología , Agua/metabolismo , Transporte Biológico/fisiología , Pinus sylvestris/metabolismoRESUMEN
We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).
Asunto(s)
Modelos Biológicos , Madera/crecimiento & desarrollo , Simulación por Computador , Fagus/anatomía & histología , Fagus/crecimiento & desarrollo , Fagus/fisiología , Pinus/anatomía & histología , Pinus/crecimiento & desarrollo , Pinus/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Transpiración de Plantas , Quercus/anatomía & histología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Estaciones del Año , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Madera/fisiologíaRESUMEN
Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.
Asunto(s)
Cambio Climático , Modelos Biológicos , Brotes de la Planta/fisiología , Estaciones del Año , Temperatura , Árboles/crecimiento & desarrollo , Análisis de Varianza , Bélgica , Betula , Fagus , QuercusRESUMEN
Accelerated leaf senescence is one of the harmful effects of elevated tropospheric ozone concentrations ([O(3)]) on plants. The number of studies dealing with mature forest trees is scarce however. Therefore, five 66-year-old beech trees (Fagus sylvatica L.) have been exposed to twice-ambient (2xambient) [O(3)] levels by means of a free-air canopy O(3) exposure system. During the sixth year of exposure, the hypothesis of accelerated leaf senescence in 2xambient [O(3)] compared with ambient [O(3)] trees was tested for both sun and shade leaves. Chlorophyll (chl) fluorescence was used to assess the photosynthetic quantum yield, and chl fluorescence images were processed to compare functional leaf homogeneity and the proportion of O(3)-injured leaf area (stipples) under ambient and 2xambient [O(3)] regimes. Based on the analysis of chl fluorescence images, sun leaves of both ambient and 2xambient [O(3)] trees had apparently developed typical necrotic O(3) stipples during high O(3) episodes in summer, while accelerated senescence was only observed with sun leaves of 2xambient [O(3)] trees. This latter effect was indicated along with a faster decrease of photosynthetic quantum yield, but without evidence of changes in non-photochemical quenching. Overall, treatment effects were small and varied among trees. Therefore, compared with ambient [O(3)], the consequence of the observed O(3)-induced accelerated leaf senescence for the carbon budget is likely limited.