Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Respir J ; 35(1): 176-85, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19574324

RESUMEN

The pathological changes in idiopathic pulmonary fibrosis (IPF) typically start in subpleural lung regions, a feature that is currently not explained. IPF, as well as bleomycin-induced lung fibrosis, are more common in smokers. We hypothesised that carbon particles, which are major components of cigarette smoke that are transported to alveoli and pleural surface, might be involved in the development of subpleural fibrosis through interaction with pleural mesothelial cells. Carbon particles were administered to mice in combination with bleomycin through intratracheal and/or intrapleural injection and fibrosis was assessed using histomorphometry. Carbon administered to the chest cavity caused severe pleural fibrosis in the presence of bleomycin, whereas bleomycin alone had no fibrogenic effect. The pleural response was associated with progressive fibrosis in subpleural regions, similar to IPF in humans. Matrix accumulation within this area evolved through mesothelial-fibroblastoid transformation, where mesothelial cells acquire myofibroblast characteristics. In contrast, carbon did not exaggerate bleomycin-induced pulmonary fibrosis after combined intratracheal administration. This represents a novel approach to induce a robust experimental model of pleural fibrosis. It also suggests that carbon particles might be involved as a cofactor in the initiation and/or progression of (subpleural) pulmonary and pleural fibrosis. Mesothelial cells appear to be critical contributors to this fibrotic process.


Asunto(s)
Bleomicina/efectos adversos , Pleura/patología , Hollín , Animales , Células Epiteliales/fisiología , Femenino , Fibrosis/inducido químicamente , Ratones , Hollín/administración & dosificación
2.
Cell Death Differ ; 15(5): 859-66, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18239673

RESUMEN

Members of the inhibitor of apoptosis protein (IAP) family have demonstrated functions in cell death, cell signalling, cell migration and mitosis. Several of them are E3 enzymes in the ubiquitination of proteins that leads to their degradation by the proteosomal machinery. We previously reported that one of them, cellular inhibitor of apoptosis protein-1 (c-IAP1), migrated from the nucleus to the surface of the Golgi apparatus in cells undergoing differentiation. Here, we show that c-IAP1 is a client protein of the stress protein HSP90 beta. In three distinct cellular models, the two proteins interact and migrate from the nucleus to the cytoplasm along the differentiation process through a leptomycin B-sensitive pathway. Inhibition of HSP90 proteins by small chemical molecules and specific depletion of HSP90 beta isoform by siRNA both lead to auto-ubiquitination of c-IAP1 and its degradation by the proteasome machinery. This chaperone function of HSP90 towards c-IAP1 is specific of its beta isoform as specific depletion of HSP90alpha does not affect c-IAP1 content. Chemical inhibition of HSP90 or siRNA-mediated depletion of HSP90 beta both inhibit cell differentiation, which can be reproduced by siRNA-mediated depletion of c-IAP1. Altogether, these results suggest that HSP90 beta prevents auto-ubiquitination and degradation of its client protein c-IAP1, whose depletion would be sufficient to inhibit cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células Epiteliales/citología , Células Epiteliales/fisiología , Proteínas HSP90 de Choque Térmico/genética , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Macrófagos/citología , Macrófagos/fisiología , Isoformas de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
3.
Cell Death Differ ; 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25361076

RESUMEN

Members of the inhibitor of apoptosis protein (IAP) family have demonstrated functions in cell death, cell signalling, cell migration and mitosis. Several of them are E3 enzymes in the ubiquitination of proteins that leads to their degradation by the proteosomal machinery. We previously reported that one of them, cellular inhibitor of apoptosis protein-1 (c-IAP1), migrated from the nucleus to the surface of the Golgi apparatus in cells undergoing differentiation. Here, we show that c-IAP1 is a client protein of the stress protein HSP90ß. In three distinct cellular models, the two proteins interact and migrate from the nucleus to the cytoplasm along the differentiation process through a leptomycin B-sensitive pathway. Inhibition of HSP90 proteins by small chemical molecules and specific depletion of HSP90ß isoform by siRNA both lead to auto-ubiquitination of c-IAP1 and its degradation by the proteasome machinery. This chaperone function of HSP90 towards c-IAP1 is specific of its ß isoform as specific depletion of HSP90α does not affect c-IAP1 content. Chemical inhibition of HSP90 or siRNA-mediated depletion of HSP90ß both inhibit cell differentiation, which can be reproduced by siRNA-mediated depletion of c-IAP1. Altogether, these results suggest that HSP90ß prevents auto-ubiquitination and degradation of its client protein c-IAP1, whose depletion would be sufficient to inhibit cell differentiation.Cell Death and Differentiation advance online publication, 1 February 2008; doi:10.1038/sj.cdd.4402320.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA