Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(9): 2430-2440.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33784496

RESUMEN

Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Genoma Bacteriano , Mycoplasma/genética , Biología Sintética/métodos , Proteínas Bacterianas/antagonistas & inhibidores , Sistemas CRISPR-Cas , Ingeniería Genética
2.
Cell ; 166(5): 1295-1307.e21, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565350

RESUMEN

Cellular compartments that cannot be biochemically isolated are challenging to characterize. Here we demonstrate the proteomic characterization of the synaptic clefts that exist at both excitatory and inhibitory synapses. Normal brain function relies on the careful balance of these opposing neural connections, and understanding how this balance is achieved relies on knowledge of their protein compositions. Using a spatially restricted enzymatic tagging strategy, we mapped the proteomes of two of the most common excitatory and inhibitory synaptic clefts in living neurons. These proteomes reveal dozens of synaptic candidates and assign numerous known synaptic proteins to a specific cleft type. The molecular differentiation of each cleft allowed us to identify Mdga2 as a potential specificity factor influencing Neuroligin-2's recruitment of presynaptic neurotransmitters at inhibitory synapses.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Neuronas GABAérgicas/metabolismo , Inmunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteoma/metabolismo , Membranas Sinápticas/metabolismo , Animales , Antígenos CD/metabolismo , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Ratones , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Proteómica , Ratas , Receptores de GABA/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tálamo/metabolismo
3.
Nature ; 633(8031): 905-913, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198643

RESUMEN

Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1-4. Despite the clinical evidence1,5-7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8-10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.


Asunto(s)
Encéfalo , COVID-19 , Fibrina , Inflamación , Trombosis , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , COVID-19/complicaciones , Fibrina/antagonistas & inhibidores , Fibrina/metabolismo , Fibrinógeno/metabolismo , Inmunidad Innata , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Células Asesinas Naturales/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Activación de Macrófagos/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Enfermedades Neuroinflamatorias/complicaciones , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/virología , Neuronas/patología , Neuronas/virología , Estrés Oxidativo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Trombosis/complicaciones , Trombosis/inmunología , Trombosis/patología , Trombosis/virología , Síndrome Post Agudo de COVID-19/inmunología , Síndrome Post Agudo de COVID-19/virología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología
4.
Cell ; 154(1): 47-60, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23827674

RESUMEN

During mitotic exit, missegregated chromosomes can recruit their own nuclear envelope (NE) to form micronuclei (MN). MN have reduced functioning compared to primary nuclei in the same cell, although the two compartments appear to be structurally comparable. Here we show that over 60% of MN undergo an irreversible loss of compartmentalization during interphase due to NE collapse. This disruption of the MN, which is induced by defects in nuclear lamina assembly, drastically reduces nuclear functions and can trigger massive DNA damage. MN disruption is associated with chromatin compaction and invasion of endoplasmic reticulum (ER) tubules into the chromatin. We identified disrupted MN in both major subtypes of human non-small-cell lung cancer, suggesting that disrupted MN could be a useful objective biomarker for genomic instability in solid tumors. Our study shows that NE collapse is a key event underlying MN dysfunction and establishes a link between aberrant NE organization and aneuploidy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Inestabilidad Genómica , Neoplasias Pulmonares/patología , Micronúcleos con Defecto Cromosómico , Membrana Nuclear/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Daño del ADN , Humanos , Interfase , Laminas/metabolismo , Neoplasias Pulmonares/genética
5.
Cell ; 151(2): 304-19, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063122

RESUMEN

Evolution of minimal DNA tumor virus' genomes has selected for small viral oncoproteins that hijack critical cellular protein interaction networks. The structural basis for the multiple and dominant functions of adenovirus oncoproteins has remained elusive. E4-ORF3 forms a nuclear polymer and simultaneously inactivates p53, PML, TRIM24, and MRE11/RAD50/NBS1 (MRN) tumor suppressors. We identify oligomerization mutants and solve the crystal structure of E4-ORF3. E4-ORF3 forms a dimer with a central ß core, and its structure is unrelated to known polymers or oncogenes. E4-ORF3 dimer units coassemble through reciprocal and nonreciprocal exchanges of their C-terminal tails. This results in linear and branched oligomer chains that further assemble in variable arrangements to form a polymer network that partitions the nuclear volume. E4-ORF3 assembly creates avidity-driven interactions with PML and an emergent MRN binding interface. This reveals an elegant structural solution whereby a small protein forms a multivalent matrix that traps disparate tumor suppressors.


Asunto(s)
Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Infecciones por Adenovirus Humanos/virología , Línea Celular , Células Cultivadas , Cristalografía por Rayos X , Humanos , Células Vegetales/virología , Pliegue de Proteína , Nicotiana/virología
6.
Nat Methods ; 15(9): 677-680, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171236

RESUMEN

As biomedical imaging datasets expand, deep neural networks are considered vital for image processing, yet community access is still limited by setting up complex computational environments and availability of high-performance computing resources. We address these bottlenecks with CDeep3M, a ready-to-use image segmentation solution employing a cloud-based deep convolutional neural network. We benchmark CDeep3M on large and complex two-dimensional and three-dimensional imaging datasets from light, X-ray, and electron microscopy.


Asunto(s)
Nube Computacional , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos
7.
Biochem Biophys Res Commun ; 505(4): 1251-1256, 2018 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333092

RESUMEN

Many studies have shown the feasibility of in vivo cardiac transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in animal experiments. However, nano-structural confirmation of the successful incorporation of the engrafted iPSC-CMs including electron microscopy (EM) has not been accomplished, partly because identification of graft cells in EM has proven to be difficult. Using APEX2, an engineered ascorbate peroxidase imaging tag, we successfully localized and analyzed the fine structure of sarcomeres and the excitation contraction machinery of iPSC-CMs 6 months after their engraftment in infarcted mouse hearts. APEX2 made iPSC-CMs visible in multiple imaging modalities including light microscopy, X-ray microscopic tomography, transmission EM, and scanning EM. EM tomography allowed assessment of the differentiation state of APEX2-positive iPSC-CMs and analysis of the fine structure of the sarcomeres including T-tubules and dyads.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocardio/citología , Miocitos Cardíacos/trasplante , Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Corazón/anatomía & histología , Humanos , Masculino , Ratones , Sondas Moleculares , Infarto del Miocardio/patología , Miocardio/ultraestructura , Miocitos Cardíacos/citología
8.
Nat Methods ; 12(1): 51-4, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25419960

RESUMEN

APEX is an engineered peroxidase that functions as an electron microscopy tag and a promiscuous labeling enzyme for live-cell proteomics. Because limited sensitivity precludes applications requiring low APEX expression, we used yeast-display evolution to improve its catalytic efficiency. APEX2 is far more active in cells, enabling the use of electron microscopy to resolve the submitochondrial localization of calcium uptake regulatory protein MICU1. APEX2 also permits superior enrichment of endogenous mitochondrial and endoplasmic reticulum membrane proteins.


Asunto(s)
Ascorbato Peroxidasas/biosíntesis , Microscopía Electrónica de Transmisión/métodos , Proteómica/métodos , Animales , Ascorbato Peroxidasas/genética , Células COS , Proteínas de Unión al Calcio/análisis , Proteínas de Transporte de Catión/análisis , Chlorocebus aethiops , Evolución Molecular Dirigida/métodos , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/análisis , Saccharomyces cerevisiae/enzimología
9.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625978

RESUMEN

Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multicelled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches, including correlative fluorescence in situ hybridization-electron microscopy (FISH-EM), transmission electron microscopy (TEM), and serial block face scanning electron microscopy (SBEM) three-dimensional (3D) reconstructions. FISH-EM of methane seep-derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortium types revealed cellular volumes of ANME and their symbiotic partners that were larger than previous estimates based on light microscopy. Polyphosphate-like granule-containing ANME (tentatively termed ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell, and the volume of the cell was larger in proportion to the number of granules inside it, but the percentage of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their ability to perform anaerobic methane oxidation.IMPORTANCE Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known of the distinguishing characteristics of these groups. Here, we applied imaging approaches to better understand the properties of these cells. We found unexpected morphological, structural, and volume variability of these uncultured groups by correlating fluorescence labeling of cells with electron microscopy observables.


Asunto(s)
Archaea/clasificación , Archaea/ultraestructura , Metano/metabolismo , Simbiosis , Anaerobiosis , Archaea/metabolismo , Deltaproteobacteria/metabolismo , Deltaproteobacteria/ultraestructura , Sedimentos Geológicos/microbiología , Hibridación Fluorescente in Situ , Consorcios Microbianos , Microscopía Electrónica , Oxidación-Reducción , Filogenia
10.
Nat Chem Biol ; 12(6): 459-65, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110681

RESUMEN

EM has long been the main technique for imaging cell structures with nanometer resolution but has lagged behind light microscopy in the crucial ability to make specific molecules stand out. Here we introduce click-EM, a labeling technique for correlative light microscopy and EM imaging of nonprotein biomolecules. In this approach, metabolic labeling substrates containing bioorthogonal functional groups are provided to cells for incorporation into biopolymers by endogenous biosynthetic machinery. The unique chemical functionality of these analogs is exploited for selective attachment of singlet oxygen-generating fluorescent dyes via bioorthogonal 'click chemistry' ligations. Illumination of dye-labeled structures generates singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product that is readily imaged by EM. We describe the application of click-EM in imaging metabolically tagged DNA, RNA and lipids in cultured cells and neurons and highlight its use in tracking peptidoglycan synthesis in the Gram-positive bacterium Listeria monocytogenes.


Asunto(s)
Química Clic , ADN/análisis , Lípidos/análisis , Microscopía Electrónica/métodos , Peptidoglicano/análisis , ARN/análisis , Aminobutiratos/química , ADN/química , ADN/metabolismo , Colorantes Fluorescentes/química , Células HEK293 , Células HeLa , Humanos , Lípidos/química , Listeria monocytogenes/metabolismo , Estructura Molecular , Neuronas/química , Neuronas/metabolismo , Peptidoglicano/biosíntesis , ARN/química , ARN/metabolismo , Oxígeno Singlete/química
11.
PLoS Comput Biol ; 13(3): e1005433, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28301477

RESUMEN

Kidney podocytes' function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology.


Asunto(s)
Citoesqueleto de Actina/patología , Citoesqueleto de Actina/fisiología , Extensiones de la Superficie Celular/patología , Modelos Biológicos , Podocitos/patología , Podocitos/fisiología , Polaridad Celular , Tamaño de la Célula , Extensiones de la Superficie Celular/fisiología , Células Cultivadas , Simulación por Computador , Humanos , Dinámicas no Lineales , Análisis Espacio-Temporal
12.
J Physiol ; 595(4): 1159-1171, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27859324

RESUMEN

KEY POINTS: Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function. It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis. Quantitative and qualitative high-magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen-producing cells. Fibrotic muscles are stiffer and have a higher concentration of collagen-producing cells. These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. ABSTRACT: Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild-type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function.


Asunto(s)
Matriz Extracelular/ultraestructura , Músculo Esquelético/patología , Animales , Colágeno/metabolismo , Desmina/genética , Desmina/metabolismo , Matriz Extracelular/metabolismo , Fibrosis , Ratones , Músculo Esquelético/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(43): E4551-9, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313043

RESUMEN

Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.


Asunto(s)
Biología Computacional/métodos , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ligasas/metabolismo , Oxazinas/metabolismo , Coloración y Etiquetado , Animales , Biocatálisis , Células COS , Supervivencia Celular , Chlorocebus aethiops , Cumarinas , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Imagenología Tridimensional , Microscopía Electrónica , Modelos Moleculares , Mutagénesis , Oxazinas/síntesis química , Oxazinas/química , Ratas
14.
BMC Genomics ; 17: 267, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27029936

RESUMEN

BACKGROUND: Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. RESULTS: We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. CONCLUSIONS: Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution.


Asunto(s)
Evolución Biológica , Chlorophyta/genética , Genoma de Planta , Embryophyta/genética , Genómica/métodos , Intrones , Modelos Genéticos , Familia de Multigenes , Filogenia , Proteoma/genética , ARN de Algas/genética , Análisis de Secuencia de ARN , Transcriptoma
15.
Methods ; 90: 39-48, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26066760

RESUMEN

Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication.


Asunto(s)
Microscopía Electrónica/métodos , Proteínas Virales/química , Adenoviridae , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Modelos Químicos , Oxidación-Reducción , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química
16.
J Neurosci ; 33(32): 12954-69, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23926251

RESUMEN

Hallmark features of neural circuit development include early exuberant innervation followed by competition and pruning to mature innervation topography. Several neural systems, including the neuromuscular junction and climbing fiber innervation of Purkinje cells, are models to study neural development in part because they establish a recognizable endpoint of monoinnervation of their targets and because the presynaptic terminals are large and easily monitored. We demonstrate here that calyx of Held (CH) innervation of its target, which forms a key element of auditory brainstem binaural circuitry, exhibits all of these characteristics. To investigate CH development, we made the first application of serial block-face scanning electron microscopy to neural development with fine temporal resolution and thereby accomplished the first time series for 3D ultrastructural analysis of neural circuit formation. This approach revealed a growth spurt of added apposed surface area (ASA)>200 µm2/d centered on a single age at postnatal day 3 in mice and an initial rapid phase of growth and competition that resolved to monoinnervation in two-thirds of cells within 3 d. This rapid growth occurred in parallel with an increase in action potential threshold, which may mediate selection of the strongest input as the winning competitor. ASAs of competing inputs were segregated on the cell body surface. These data suggest mechanisms to select "winning" inputs by regional reinforcement of postsynaptic membrane to mediate size and strength of competing synaptic inputs.


Asunto(s)
Tronco Encefálico/citología , Modelos Neurológicos , Neuronas/fisiología , Sinapsis/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Axones/ultraestructura , Tronco Encefálico/crecimiento & desarrollo , Calcio/metabolismo , Simulación por Computador , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Imagenología Tridimensional , Técnicas In Vitro , Masculino , Ratones , Microscopía Electrónica de Rastreo , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Dinámicas no Lineales , Embarazo , Terminales Presinápticos/ultraestructura , Estadísticas no Paramétricas , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura
17.
PLoS Biol ; 9(4): e1001041, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21483721

RESUMEN

Electron microscopy (EM) achieves the highest spatial resolution in protein localization, but specific protein EM labeling has lacked generally applicable genetically encoded tags for in situ visualization in cells and tissues. Here we introduce "miniSOG" (for mini Singlet Oxygen Generator), a fluorescent flavoprotein engineered from Arabidopsis phototropin 2. MiniSOG contains 106 amino acids, less than half the size of Green Fluorescent Protein. Illumination of miniSOG generates sufficient singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by EM. MiniSOG fusions to many well-characterized proteins localize correctly in mammalian cells, intact nematodes, and rodents, enabling correlated fluorescence and EM from large volumes of tissue after strong aldehyde fixation, without the need for exogenous ligands, probes, or destructive permeabilizing detergents. MiniSOG permits high quality ultrastructural preservation and 3-dimensional protein localization via electron tomography or serial section block face scanning electron microscopy. EM shows that miniSOG-tagged SynCAM1 is presynaptic in cultured cortical neurons, whereas miniSOG-tagged SynCAM2 is postsynaptic in culture and in intact mice. Thus SynCAM1 and SynCAM2 could be heterophilic partners. MiniSOG may do for EM what Green Fluorescent Protein did for fluorescence microscopy.


Asunto(s)
Coloración y Etiquetado , 3,3'-Diaminobencidina/análisis , Estructuras Animales , Animales , Encéfalo/ultraestructura , Caenorhabditis elegans/química , Células , Colorantes Fluorescentes/análisis , Ratones , Microscopía Electrónica , Microscopía Fluorescente , Mitocondrias/ultraestructura , Fototropinas/análisis , Proteínas/análisis
18.
Proc Natl Acad Sci U S A ; 108(7): 3005-10, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21278334

RESUMEN

A major goal of stem-cell research is to identify conditions that reliably regulate their differentiation into specific cell types. This goal is particularly important for human stem cells if they are to be used for in vivo transplantation or as a platform for drug development. Here we describe the establishment of procedures to direct the differentiation of human embryonic stem cells and human induced pluripotent stem cells into forebrain neurons that are capable of forming synaptic connections. In addition, HEK293T cells expressing Neuroligin (NLGN) 3 and NLGN4, but not those containing autism-associated mutations, are able to induce presynaptic differentiation in human induced pluripotent stem cell-derived neurons. We show that a mutant NLGN4 containing an in-frame deletion is unable to localize correctly to the cell surface when overexpressed and fails to enhance synapse formation in human induced pluripotent stem cell-derived neurons. These findings establish human pluripotent stem cell-derived neurons as a viable model for the study of synaptic differentiation and function under normal and disorder-associated conditions.


Asunto(s)
Diferenciación Celular/fisiología , Trastornos Generalizados del Desarrollo Infantil/genética , Células Madre Embrionarias/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Prosencéfalo/citología , Sinapsis/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Cartilla de ADN/genética , Electrofisiología , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Recién Nacido , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
19.
Microsc Microanal ; 20(6): 1835-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25275291

RESUMEN

The skeletal muscle extracellular matrix (ECM) supports muscle's passive mechanical function and provides a unique environment for extracellular tissues such as nerves, blood vessels, and a cadre of mononuclear cells. Within muscle ECM, collagen is thought to be the primary load-bearing protein, yet its structure and organization with respect to muscle fibers, tendon, and mononuclear cells is unknown. Detailed examination of extracellular collagen morphology requires high-resolution electron microscopy performed over relatively long distances because multinucleated muscle cells are very long and extend from several millimeters to several centimeters. Unfortunately, there is no tool currently available for high resolution ECM analysis that extends over such distances relevant to muscle fibers. Serial block face scanning electron microscopy is reported here to examine skeletal muscle ECM ultrastructure over hundreds of microns. Ruthenium red staining was implemented to enhance contrast and utilization of variable pressure imaging reduced electron charging artifacts, allowing continuous imaging over a large ECM volume. This approach revealed previously unappreciated perimysial collagen structures that were reconstructed via both manual and semi-automated segmentation methods. Perimysial collagen structures in the ECM may provide a target for clinical therapies aimed at reducing skeletal muscle fibrosis and stiffness.


Asunto(s)
Colágeno/ultraestructura , Matriz Extracelular/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Músculo Esquelético/ultraestructura , Animales , Procesamiento de Imagen Asistido por Computador , Ratones
20.
J Comp Neurol ; 532(2): e25552, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37916792

RESUMEN

Early postnatal brain development involves complex interactions among maturing neurons and glial cells that drive tissue organization. We previously analyzed gene expression in tissue from the mouse medial nucleus of the trapezoid body (MNTB) during the first postnatal week to study changes that surround rapid growth of the large calyx of Held (CH) nerve terminal. Here, we present genes that show significant changes in gene expression level during the second postnatal week, a developmental timeframe that brackets the onset of airborne sound stimulation and the early stages of myelination. Gene Ontology analysis revealed that many of these genes are related to the myelination process. Further investigation of these genes using a previously published cell type-specific bulk RNA-Seq data set in cortex and our own single-cell RNA-Seq data set in the MNTB revealed enrichment of these genes in the oligodendrocyte lineage (OL) cells. Combining the postnatal day (P)6-P14 microarray gene expression data with the previously published P0-P6 data provided fine temporal resolution to investigate the initiation and subsequent waves of gene expression related to OL cell maturation and the process of myelination. Many genes showed increasing expression levels between P2 and P6 in patterns that reflect OL cell maturation. Correspondingly, the first myelin proteins were detected by P4. Using a complementary, developmental series of electron microscopy 3D image volumes, we analyzed the temporal progression of axon wrapping and myelination in the MNTB. By employing a combination of established ultrastructural criteria to classify reconstructed early postnatal glial cells in the 3D volumes, we demonstrated for the first time that astrocytes within the mouse MNTB extensively wrap the axons of the growing CH terminal prior to OL cell wrapping and compaction of myelin. Our data revealed significant expression of several myelin genes and enrichment of multiple genes associated with lipid metabolism in astrocytes, which may subserve axon wrapping in addition to myelin formation. The transition from axon wrapping by astrocytes to OL cells occurs rapidly between P4 and P9 and identifies a potential new role of astrocytes in priming calyceal axons for subsequent myelination.


Asunto(s)
Astrocitos , Vaina de Mielina , Animales , Ratones , Axones/ultraestructura , Oligodendroglía/fisiología , Tronco Encefálico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA