Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 154(1): 81-94, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37409781

RESUMEN

Masking can reduce the efficiency of communication and prey and predator detection. Most underwater sounds fluctuate in amplitude, which may influence the amount of masking experienced by marine mammals. The hearing thresholds of two harbor seals for tonal sweeps (centered at 4 and 32 kHz) masked by sinusoidal amplitude modulated (SAM) Gaussian one-third octave noise bands centered around the narrow-band test sweep frequencies, were studied with a psychoacoustic technique. Masking was assessed in relation to signal duration, (500, 1000, and 2000 ms) and masker level, at eight amplitude modulation rates (1-90 Hz). Masking release (MR) due to SAM compared thresholds in modulated and unmodulated maskers. Unmodulated maskers resulted in critical ratios of 21 dB at 4 kHz and 31 dB at 32 kHz. Masked thresholds were similarly affected by SAM rate with the lowest thresholds and the largest MR being observed for SAM rates of 1 and 2 Hz at higher masker levels. MR was higher for 32-kHz maskers than for 4-kHz maskers. Increasing signal duration from 500 ms to 2000 ms had minimal effect on MR. The results are discussed with respect to MR resulting from envelope variation and the impact of noise in the environment on target signal detection.


Asunto(s)
Phoca , Animales , Umbral Auditivo , Enmascaramiento Perceptual , Ruido/efectos adversos , Audición , Cetáceos
2.
J Acoust Soc Am ; 148(6): 3873, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33379889

RESUMEN

This study concludes a larger project on the frequency-dependent susceptibility to noise-induced temporary hearing threshold shift (TTS) in harbor seals (Phoca vitulina). Here, two seals were exposed to one-sixth-octave noise bands (NBs) centered at 0.5, 1, and 2 kHz at several sound exposure levels (SELs, in dB re 1 µPa2s). TTSs were quantified at the center frequency of each NB, half an octave above, and one octave above, at the earliest within 1-4 min after exposure. Generally, elicited TTSs were low, and the highest TTS1-4 occurred at half an octave above the center frequency of the fatiguing sound: after exposure to the 0.5-kHz NB at 210 dB SEL, the TTS1-4 at 0.71 kHz was 2.3 dB; after exposure to the 1-kHz NB at 207 dB SEL, the TTS1-4 at 1.4 kHz was 6.1 dB; and after exposure to the 2-kHz NB at 215 dB SEL, TTS1-4 at 2.8 kHz was 7.9 dB. Hearing always recovered within 60 min, and susceptibility to TTS was similar in both seals. The results show that, for the studied frequency range, the lower the center frequency of the fatiguing sound, the higher the SEL required to cause the same TTS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA