Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 69(10): 2075-2088, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32447411

RESUMEN

In line with the ongoing phase I trial (NCT03784625) dedicated to melanoma targeted radionuclide therapy (TRT), we explore the interplay between immune system and the melanin ligand [131I]ICF01012 alone or combined with immunotherapy (immune checkpoint inhibitors, ICI) in preclinical models. Here we demonstrate that [131I]ICF01012 induces immunogenic cell death, characterized by a significant increase in cell surface-exposed annexin A1 and calreticulin. Additionally, [131I]ICF01012 increases survival in immunocompetent mice, compared to immunocompromised (29 vs. 24 days, p = 0.0374). Flow cytometry and RT-qPCR analyses highlight that [131I]ICF01012 induces adaptive and innate immune cell recruitment in the tumor microenvironment. [131I]ICF01012 combination with ICIs (anti-CTLA-4, anti-PD-1, anti-PD-L1) has shown that tolerance is a main immune escape mechanism, whereas exhaustion is not present after TRT. Furthermore, [131I]ICF01012 and ICI combination has systematically resulted in a prolonged survival (p < 0.0001) compared to TRT alone. Specifically, [131I]ICF01012 + anti-CTLA-4 combination significantly increases survival compared to anti-CTLA-4 alone (41 vs. 26 days; p = 0.0011), without toxicity. This work represents the first global characterization of TRT-induced modifications of the antitumor immune response, demonstrating that tolerance is a main immune escape mechanism and that combining TRT and ICI is promising.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Radioisótopos de Yodo/uso terapéutico , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Tolerancia a Radiación/efectos de los fármacos , Animales , Terapia Combinada , Melanoma Experimental/patología , Ratones , Células Tumorales Cultivadas , Proteína Tumoral Controlada Traslacionalmente 1
2.
Am J Cancer Res ; 11(4): 1600-1615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33948376

RESUMEN

ANXA1, first described in the context of inflammation, appears to be deregulated in many cancers and increased in melanomas compared with melanocytes. To date, few studies have investigated the role of ANXA1 in melanoma progression. Furthermore, this protein is expressed by various cell types, including immune and endothelial cells. We therefore analyzed the specific roles of ANXA1 using melanoma and stromal cells in two human cell lines (A375-MA2 and SK-MEL-28) in vitro and in Anxa1 null C57Bl6/J mice bearing B16Bl6 tumors. We report decreased proliferation in both ANXA1 siRNA A375-MA2 and SK-MEL-28, but cell-dependent effects of ANXA1 in migration in vitro. However, we also observed a significant decrease of B16Bl6 tumor growth associated with a reduction of Ki-67 positive cells in Anxa1 null mice compared with wild-type mice. Interestingly, we also found a significant reduction of spontaneous metastases, which can be attributed to decreased angiogenesis concomitantly with greater immune cell presence in the Anxa1 null stromal context. This study highlights the pejorative role of ANXA1 in both tumor and stromal cells in melanoma, due to its involvement in proliferation and angiogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA