Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 104(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37909282

RESUMEN

Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Humanos , Ratones , Animales , Conejos , Enterovirus Humano A/genética , Antígenos Virales/genética , Proteínas de la Cápside/genética , Genotipo , Anticuerpos Monoclonales
2.
J Med Virol ; 94(12): 5877-5884, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35977919

RESUMEN

To assess circulation of the Sabin 2 poliovirus vaccine strain in Madagascar after its withdrawal from the oral polio vaccine in April 2016, a reinforced poliovirus surveillance was implemented in three regions of Madagascar from January 2016 to December 2017. Environmental samples and stool specimens from healthy children were screened using the Global Polio Laboratory Network algorithm to detect the presence of polioviruses. Detected polioviruses were molecularly typed and their genomes fully sequenced. Polioviruses were detected during all but 4 months of the study period. All isolates were related to the vaccine strains and no wild poliovirus was detected. The majority of isolates belong to the serotype 3. The last detection of Sabin 2 occurred in July 2016, 3 months after its withdrawal. No vaccine-derived poliovirus of any serotype was observed during the study. Only few poliovirus isolates contained sequences from non-polio origin. The genetic characterization of all the poliovirus isolates did not identify isolates that were highly divergent compared to the vaccine strains. This observation is in favor of a good vaccine coverage that efficiently prevented long-lasting transmission chains between unvaccinated persons. This study underlines that high commitment in the fight against polioviruses can succeed in stopping their circulation even in countries where poor sanitation remains a hurdle.


Asunto(s)
Enterovirus , Poliomielitis , Poliovirus , Niño , Humanos , Madagascar/epidemiología , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Vacuna Antipolio Oral , Serogrupo
3.
BMC Infect Dis ; 22(1): 821, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348312

RESUMEN

BACKGROUND: Poliomyelitis outbreaks due to pathogenic vaccine-derived polioviruses (VDPVs) are threatening and complicating the global polio eradication initiative. Most of these VDPVs are genetic recombinants with non-polio enteroviruses (NPEVs) of species C. Little is known about factors favoring this genetic macroevolution process. Since 2001, Madagascar has experienced several outbreaks of poliomyelitis due to VDPVs, and most of VDPVs were isolated in the south of the island. The current study explored some of the viral factors that can promote and explain the emergence of recombinant VDPVs in Madagascar. METHODS: Between May to August 2011, we collected stools from healthy children living in two southern and two northern regions of Madagascar. Virus isolation was done in RD, HEp-2c, and L20B cell lines, and enteroviruses were detected using a wide-spectrum 5'-untranslated region RT-PCR assay. NPEVs were then sequenced for the VP1 gene used for viral genotyping. RESULTS: Overall, we collected 1309 stools, of which 351 NPEVs (26.8%) were identified. Sequencing revealed 33 types of viruses belonging to three different species: Enterovirus A (8.5%), Enterovirus B (EV-B, 40.2%), and Enterovirus C (EV-C, 51.3%). EV-C species included coxsackievirus A13, A17, and A20 previously described as putative recombination partners for poliovirus vaccine strains. Interestingly, the isolation rate was higher among stools originating from the South (30.3% vs. 23.6%, p-value = 0.009). EV-C were predominant in southern sites (65.7%) while EV-B predominated in northern sites (54.9%). The factors that explain the relative abundance of EV-C in the South are still unknown. CONCLUSIONS: Whatever its causes, the relative abundance of EV-C in the South of Madagascar may have promoted the infections of children by EV-C, including the PV vaccine strains, and have favored the recombination events between PVs and NPEVs in co-infected children, thus leading to the recurrent emergence of recombinant VDPVs in this region of Madagascar.


Asunto(s)
Enterovirus Humano C , Infecciones por Enterovirus , Enterovirus , Poliomielitis , Vacunas contra Poliovirus , Poliovirus , Niño , Humanos , Madagascar/epidemiología , Filogenia , Infecciones por Enterovirus/epidemiología , Poliomielitis/prevención & control , Enterovirus Humano C/genética , Brotes de Enfermedades , Vacuna Antipolio Oral/efectos adversos
4.
Virologie (Montrouge) ; 25(4): 224-235, 2021 08 01.
Artículo en Francés | MEDLINE | ID: mdl-34468319

RESUMEN

Genetic recombination is a major force driving the evolution of some species of positive sense RNA viruses. Recombination events occur when at least two viruses simultaneously infect the same cell, thereby giving rise to new genomes comprised of genetic sequences originating from the parental genomes. The main mechanism by which recombination occurs involves the viral polymerase that generates a chimera as it switches templates during viral replication. Various experimental systems have alluded to the existence of recombination events that are independent of viral polymerase activity. The origins and frequency of such events remain to be elucidated to this day. Furthermore, it is not known whether non-replicative recombination yields products that are different from recombinants generated by the viral polymerase. If this is the case, then non-replicative recombination may play a unique role in the evolution of positive sense RNA viruses. Finally, the sparse data available suggest that non-replicative recombination does not necessarily involve only virus-specific sequences. It is thus possible that the non-replicative recombination observed in virus-focused studies may in fact reveal a more generalized mechanism that is non-specific to virus RNAs.


Asunto(s)
Virus ARN Monocatenarios Positivos , Recombinación Genética , Secuencia de Bases , ARN Viral/genética , Recombinación Genética/genética , Replicación Viral/genética
5.
Virologie (Montrouge) ; 25(4): 62-73, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34468320

RESUMEN

Genetic recombination is a major force driving the evolution of some species of positive sense RNA viruses. Recombination events occur when at least two viruses simultaneously infect the same cell, thereby giving rise to new genomes comprised of genetic sequences originating from the parental genomes. The main mechanism by which recombination occurs involves the viral polymerase that generates a chimera as it switches templates during viral replication. Various experimental systems have alluded to the existence of recombination events that are independent of viral polymerase activity. The origins and the frequency of such events remain to be elucidated to this day. Furthermore, it is not known whether non-replicative recombination yields products that are different from recombinants generated by the viral polymerase. If this is the case, then non-replicative recombination may play a unique role in the evolution of positive sense RNA viruses. Finally, the sparse data available suggest that non-replicative recombination does not necessarily involve only virus-specific sequences. It is thus possible that the non-replicative recombination observed in virus-focused studies may in fact reveal a more generalized mechanism that is non-specific to virus RNAs.


Asunto(s)
Virus ARN Monocatenarios Positivos , Recombinación Genética , Secuencia de Bases , ARN Viral/genética , Recombinación Genética/genética , Replicación Viral/genética
6.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602612

RESUMEN

Human enteroviruses of species A (EV-A) are the leading cause of hand-foot-and-mouth disease (HFMD). EV-A71 is frequently implicated in HFMD outbreaks and can also cause severe neurological manifestations. We investigated the molecular epidemiological processes at work and the contribution of genetic recombination to the evolutionary history of EV-A in Madagascar, focusing on the recently described EV-A71 genogroup F in particular. Twenty-three EV-A isolates, collected mostly in 2011 from healthy children living in various districts of Madagascar, were characterized by whole-genome sequencing. Eight different types were identified, highlighting the local circulation and diversity of EV-A. Comparative genome analysis revealed evidence of frequent recent intra- and intertypic genetic exchanges between the noncapsid sequences of Madagascan EV-A isolates. The three EV-A71 isolates had different evolutionary histories in terms of recombination, with one isolate displaying a mosaic genome resulting from recent genetic exchanges with Madagascan coxsackieviruses A7 and possibly A5 and A10 or common ancestors. The engineering and characterization of recombinants generated from progenitors belonging to different EV-A types or EV-A71 genogroups with distantly related nonstructural sequences indicated a high level of permissiveness for intertypic genetic exchange in EV-A. This permissiveness suggests that the primary viral functions associated with the nonstructural sequences have been highly conserved through the diversification and evolution of the EV-A species. No outbreak of disease due to EV-A has yet been reported in Madagascar, but the diversity, circulation, and evolution of these viruses justify surveillance of EV-A circulation and HFMD cases to prevent possible outbreaks due to emerging strains.IMPORTANCE Human enteroviruses of species A (EV-A), including EV-A71, are the leading cause of hand-foot-and-mouth disease (HFMD) and may also cause severe neurological manifestations. We investigated the circulation and molecular evolution of EV-A in Madagascar, focusing particularly on the recently described EV-A71 genogroup F. Eight different types, collected mostly in 2011, were identified, highlighting the local circulation and diversity of EV-A. Comparative genome analysis revealed evidence of frequent genetic exchanges between the different types of isolates. The three EV-A71 isolates had different evolutionary histories in terms of recombination. The engineering and characterization of recombinants involving progenitors belonging to different EV-A types indicated a high degree of permissiveness for genetic exchange in EV-A. No outbreak of disease due to EV-A has yet been reported in Madagascar, but the diversity, circulation, and evolution of these viruses justify the surveillance of EV-A circulation to prevent possible HFMD outbreaks due to emerging strains.


Asunto(s)
Enterovirus Humano A/genética , Recombinación Genética/genética , Animales , Línea Celular , Línea Celular Tumoral , Preescolar , Chlorocebus aethiops , Brotes de Enfermedades , Infecciones por Enterovirus/virología , Evolución Molecular , Genoma Viral/genética , Genotipo , Células HEK293 , Enfermedad de Boca, Mano y Pie/genética , Enfermedad de Boca, Mano y Pie/virología , Humanos , Madagascar , Epidemiología Molecular , Tolerancia , Filogenia , Células Vero , Secuenciación Completa del Genoma/métodos
7.
Arch Virol ; 165(11): 2627-2632, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32776175

RESUMEN

Due to the risk of poliovirus importation from Ukraine in 2015, a combined surveillance program monitoring the circulation of enteroviruses (EVs) in healthy children from at-risk areas and in the environment was conducted in Romania. Virological testing of stool samples collected from 155 healthy children aged from two months to six years and of 186 sewage water samples collected from different areas was performed. A total of 58 (37.42%) stool samples and 50 (26.88%) sewage water samples were positive for non-polio EVs, but no poliovirus was detected. A high level of circulation of echovirus (E) types 6 and 7 and coxsackievirus (CV) type B5 was observed.


Asunto(s)
Enterovirus Humano B/aislamiento & purificación , Enterovirus/aislamiento & purificación , Heces/virología , Aguas del Alcantarillado/virología , Niño , Preescolar , Enterovirus/clasificación , Enterovirus/genética , Enterovirus Humano B/genética , Infecciones por Enterovirus/virología , Ambiente , Monitoreo del Ambiente/métodos , Voluntarios Sanos , Humanos , Lactante , Límite de Detección , Modelos Logísticos , Tipificación Molecular/métodos , Filogenia , Poliovirus/genética , Poliovirus/aislamiento & purificación , Rumanía , Aguas Residuales/virología
8.
Arch Virol ; 164(3): 747-755, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30631958

RESUMEN

A variety of viruses can cause acute flaccid paralysis (AFP). However, the causative agent, sometimes, remains undetermined. Metagenomics helps in identifying viruses not diagnosed by conventional methods. Stool samples from AFP (n = 104) and non-AFP (n = 114) cases that tested enterovirus-negative by WHO standard methods were investigated. A metagenomics approach, first used on five pools of four samples each, revealed the presence of adenovirus sequences. Amplification in A549 cells and full-genome sequencing were used for complete virus identification and for designing a PCR assay to screen individual related samples. Metagenomic analysis showed that adenovirus sequences that were closely to the A31 and A61 genotypes were the most abundant. Two out of the corresponding 20 individual samples were found positive by PCR, and isolates were obtained in cell culture. Phylogenetic analysis based on complete genome sequences showed that the viruses belong to HAdV-A31 genotype (98-100% nucleotide sequence identity). PCR analysis of stool samples from all AFP and non-AFP cases revealed that a larger proportion of the positive samples were from AFP cases (17.3%) than from non-AFP cases (2.4%). These results open the way to studies aiming to test a possible role of HAdV-A31 in the pathogenesis of AFP.


Asunto(s)
Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/genética , Adenovirus Humanos/aislamiento & purificación , Paraplejía/virología , Adenovirus Humanos/clasificación , Adolescente , Niño , Preescolar , Heces/virología , Genotipo , Humanos , Lactante , Metagenómica , Filogenia , Túnez
9.
Emerg Infect Dis ; 24(4): 754-757, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553325

RESUMEN

We analyzed whole-genome sequences of 8 enterovirus A71 isolates (EV-A71). We confirm the circulation of genogroup C and the new genogroup E in West Africa. Our analysis demonstrates wide geographic circulation and describes genetic exchanges between EV-A71 and autochthonous EV-A that might contribute to the emergence of pathogenic lineages.


Asunto(s)
Enterovirus Humano A/clasificación , Enterovirus Humano A/genética , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Variación Genética , Genoma Viral , Genotipo , Humanos , Filogenia , Recombinación Genética
10.
Virologie (Montrouge) ; 22(6): 289-303, 2018 12 01.
Artículo en Francés | MEDLINE | ID: mdl-33109509

RESUMEN

Since the identification of the first enteroviruses, the classification and the nomenclature of these viruses were modified several times. Even the base of the classification was changed during the 2000s when genetic criteria superseded the historical serological criteria used to identify enteroviruses. Product of these modifications, the current classification and nomenclature are confusing for students, researchers and practitioners who discover them for the first time; coxsackieviruses A and B, echoviruses and polioviruses are gathered into different species while surprisingly, in view of the etymology, the rhinoviruses now belong the genus Enterovirus. This review aims to summarize the history of the methods and concepts that were used to elaborate the successive classifications and to feature the discoveries that led to their modifications. Mostly slight, sometimes drastic, these modifications underline the history of our knowledge about the enteroviruses and their diversity; indirectly, they highlight our profound ignorance.

11.
J Virol ; 90(21): 9683-9692, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27535047

RESUMEN

RNA viruses present an extraordinary threat to human health, given their sudden and unpredictable appearance, the potential for rapid spread among the human population, and their ability to evolve resistance to antiviral therapies. The recent emergence of chikungunya virus, Zika virus, and Ebola virus highlights the struggles to contain outbreaks. A significant hurdle is the availability of antivirals to treat the infected or protect at-risk populations. While several compounds show promise in vitro and in vivo, these outbreaks underscore the need to accelerate drug discovery. The replication of several viruses has been described to rely on host polyamines, small and abundant positively charged molecules found in the cell. Here, we describe the antiviral effects of two molecules that alter polyamine levels: difluoromethylornithine (DFMO; also called eflornithine), which is a suicide inhibitor of ornithine decarboxylase 1 (ODC1), and diethylnorspermine (DENSpm), an activator of spermidine/spermine N1-acetyltransferase (SAT1). We show that reducing polyamine levels has a negative effect on diverse RNA viruses, including several viruses involved in recent outbreaks, in vitro and in vivo These findings highlight the importance of the polyamine biosynthetic pathway to viral replication, as well as its potential as a target in the development of further antivirals or currently available molecules, such as DFMO. IMPORTANCE: RNA viruses present a significant hazard to human health, and combatting these viruses requires the exploration of new avenues for targeting viral replication. Polyamines, small positively charged molecules within the cell, have been demonstrated to facilitate infection for a few different viruses. Our study demonstrates that diverse RNA viruses rely on the polyamine pathway for replication and highlights polyamine biosynthesis as a promising drug target.


Asunto(s)
Antivirales/farmacología , Poliaminas/metabolismo , Virus ARN/efectos de los fármacos , Acetiltransferasas/metabolismo , Animales , Línea Celular , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/metabolismo , Brotes de Enfermedades , Ebolavirus/efectos de los fármacos , Ebolavirus/metabolismo , Eflornitina/farmacología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Humanos , Ratones , Ratones Endogámicos C57BL , Espermina/análogos & derivados , Espermina/farmacología , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología
12.
PLoS Pathog ; 11(11): e1005266, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26562151

RESUMEN

Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species' C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5' untranslated region (5' UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5' UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5' UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5' UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5' UTR. By contrast to the recombination of the cVDPV with the 5' UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5' UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages.


Asunto(s)
Regiones no Traducidas 5'/genética , Plasticidad de la Célula/fisiología , Enterovirus Humano C/genética , Recombinación Genética , Evolución Biológica , Infecciones por Enterovirus/genética , Genoma Viral/genética , Humanos , Fenotipo , Poliovirus/genética , Replicación Viral/genética
13.
Intervirology ; 60(6): 271-275, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29898445

RESUMEN

In 2017, numerous cases of acute haemorrhagic conjunctivitis (AHC) were reported in the Caribbean and in South America. Preliminary reports identified adenoviruses and enteroviruses in some patient samples but, until now, none of the etiologic agents have been fully characterized. We report the full-length genomic sequences of 4 coxsackievirus A24 (CV-A24) isolates collected from AHC patients in French Guiana during this outbreak (May and June 2017). These isolates are very closely related and belong to the genotype IV of CV-A24 variant, which consists of strains sampled worldwide during AHC outbreaks in the 2000s and 2010s. No recombination events were detected within the genomic sequences, indicating that members of this genotype have continuously circulated worldwide for more than 10 years without undergoing recombination with other enteroviruses. This unusual trait could be due to their ocular tropism that could impede genetic exchanges between these viruses and other enteroviruses, which replicate mainly in the gut.

14.
J Gen Virol ; 97(9): 2194-2200, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27405867

RESUMEN

Poliovirus (PV)-induced apoptosis seems to play a major role in central nervous system (CNS) tissue injury, a crucial feature of the pathogenesis of poliomyelitis. We have previously shown that calcium (Ca2+) flux from the endoplasmic reticulum (ER) to the cytosol during PV infection is involved in apoptosis induction in human neuroblastoma cells. We show here that PV infection is associated with a transient upregulation of Herp (homocysteine-induced ER protein), a protein known to promote the degradation of ER-resident Ca2+ channels. Herp gene transcription is controlled by the transcription factor CREB3 (cAMP response element-binding protein 3). We found that the CREB3/Herp pathway limited the increase in cytosolic Ca2+ concentration and apoptosis early in PV infection. This may reduce the extent of PV-induced damage to the CNS during poliomyelitis.


Asunto(s)
Apoptosis , Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Poliovirus/inmunología , Poliovirus/patogenicidad , Línea Celular , Humanos , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/virología , Transducción de Señal
15.
J Virol ; 87(20): 11031-46, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23926333

RESUMEN

We have shown that the circulating vaccine-derived polioviruses responsible for poliomyelitis outbreaks in Madagascar have recombinant genomes composed of sequences encoding capsid proteins derived from poliovaccine Sabin, mostly type 2 (PVS2), and sequences encoding nonstructural proteins derived from other human enteroviruses. Interestingly, almost all of these recombinant genomes encode a nonstructural 3A protein related to that of field coxsackievirus A17 (CV-A17) strains. Here, we investigated the repercussions of this exchange, by assessing the role of the 3A proteins of PVS2 and CV-A17 and their putative cellular partners in viral replication. We found that the Golgi protein acyl-coenzyme A binding domain-containing 3 (ACBD3), recently identified as an interactor for the 3A proteins of several picornaviruses, interacts with the 3A proteins of PVS2 and CV-A17 at viral RNA replication sites, in human neuroblastoma cells infected with either PVS2 or a PVS2 recombinant encoding a 3A protein from CV-A17 [PVS2-3A(CV-A17)]. The small interfering RNA-mediated downregulation of ACBD3 significantly increased the growth of both viruses, suggesting that ACBD3 slowed viral replication. This was confirmed with replicons. Furthermore, PVS2-3A(CV-A17) was more resistant to the replication-inhibiting effect of ACBD3 than the PVS2 strain, and the amino acid in position 12 of 3A was involved in modulating the sensitivity of viral replication to ACBD3. Overall, our results indicate that exchanges of nonstructural proteins can modify the relationships between enterovirus recombinants and cellular interactors and may thus be one of the factors favoring their emergence.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Poliovirus/fisiología , Proteínas del Núcleo Viral/metabolismo , Replicación Viral , Línea Celular , Humanos , Neuronas/virología
16.
Virologie (Montrouge) ; 18(5): 251-263, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065919

RESUMEN

One characteristic of infections with RNA viruses of positive polarity is the generation of new specialized membrane structures acting as platforms accommodating the complexes involved in replication of the viral genome. The functionality of these "replication organelles" is dependent on interactions between viral nonstructural proteins, recruited host factors and viral RNAs. Poliovirus, the causal agent of paralytic poliomyelitis, is the model most frequently used for identification of the viral and cellular components involved in this process. Several recent studies have suggested that the efficiency of genome replication for poliovirus and other members of the Picornaviridæ family results from the recruitment of a phosphatidylinositol (PI) kinase, PI4KIIIß (phosphatidylinositol-4-kinase IIIß), which generates a lipid membrane microenvironment rich in PI4P (phosphatidylinositol-4-phosphate) at sites of replication. The nonstructural protein 3A of these viruses has been shown to play a role in the enrichment of replication organelle membranes in PI4KIIIß, but the mechanisms of kinase recruitment seem to differ between members of this family of viruses. Hepatitis C, from the Flaviviridæ family, recruits another PI4KIII kinase, PI4KIIIα, to sites of replication, through another nonstructural protein, NS5A. In this review, we will describe the various recently proposed models and the potential role of PI4P lipids. Finally, we will show that PI4KIII kinases are potential targets for the development of antiviral drugs targeting many positive-polarity RNA viruses.

17.
J Clin Microbiol ; 51(3): 759-70, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23254123

RESUMEN

Human enteroviruses (HEVs) are endemic worldwide and among the most common viruses infecting humans. Nevertheless, there are very limited data on the circulation and genetic diversity of HEVs in developing countries and sub-Saharan Africa in particular. We investigated the circulation and genetic diversity of HEVs among 436 healthy children in a limited area of the far north region of Cameroon in 2008 and 2009. We also characterized the genetic biodiversity of 146 nonpolio enterovirus (NPEV) isolates obtained throughout the year 2008 from stool specimens of patients with acute flaccid paralysis (AFP) in Cameroon, Chad, and Gabon. We found a high rate of NPEV infections (36.9%) among healthy children in the far north region of Cameroon. Overall, 45 different HEV types were found among healthy children and AFP patients. Interestingly, this study uncovered a high rate of HEVs of species C (HEV-C) among all typed NPEVs: 63.1% (94/149) and 39.5% (49/124) in healthy children and AFP cases, respectively. Besides extensive circulation, the most prevalent HEV-C type, coxsackievirus A-13, featured a tremendous intratypic diversity. Africa-specific HEV lineages were discovered, including HEV-C lineages and the recently reported EV-A71 "genogroup E." Virtually all pathogenic circulating vaccine-derived polioviruses (cVDPVs) that have been fully characterized were recombinants between oral poliovaccine (OPV) strains and cocirculating HEV-C strains. The extensive circulation of diverse HEV-C types and lineages in countries where OPV is massively used constitutes a major viral factor that could promote the emergence of recombinant cVDPVs in the Central African subregion.


Asunto(s)
Enterovirus Humano C/clasificación , Enterovirus Humano C/aislamiento & purificación , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Variación Genética , Camerún/epidemiología , Portador Sano/epidemiología , Portador Sano/virología , Chad/epidemiología , Niño , Preescolar , Enterovirus Humano C/genética , Gabón/epidemiología , Genotipo , Humanos , Datos de Secuencia Molecular , Prevalencia , ARN Viral/genética , Análisis de Secuencia de ADN
18.
Med Sci (Paris) ; 29(11): 1034-41, 2013 Nov.
Artículo en Francés | MEDLINE | ID: mdl-24280508

RESUMEN

The oral poliovaccine, a live vaccine made of attenuated poliovirus strains, is the main tool of the vaccination campaigns organised for eradicating poliomyelitis. these campaigns had led to the decline and, thereafter, to the disappearance of wild poliovirus strains of the three serotypes (1-3) in most parts of the world. However, when the poliovaccine coverage becomes too low, vaccine polioviruses can circulate in insufficiently immunized populations and become then pathogenic by mutations and genetic recombination with other enteroviruses of the same species, in particular some coxsackievirus A. These mutated and recombinant vaccine strains have been implicated in several epidemics of paralytic poliomyelitis. Two polio outbreaks associated with these pathogenic circulating vaccine-derived poliovirus (cVDPV) occurred in 2001-2002 and 2005 in the South of Madagascar where vaccine coverage was low. These cVDPV, of serotype 2 or 3, were isolated from paralyzed children and some of their healthy contacts. Other cVDPV were isolated in the same region from healthy children in 2011, indicating that these viruses were circulating again. Vaccination campaigns could stop the outbreaks in 2002 and 2005, and most probably prevent another one in 2011. Therefore, the genetic plasticity of poliovaccine strains that threatens the benefit of vaccination campaigns is the target of an accurate surveillance and an important theme of studies in the virology laboratories of the Institut Pasteur international network.


Asunto(s)
Poliomielitis/epidemiología , Poliomielitis/virología , Vacuna Antipolio Oral/efectos adversos , Poliovirus/genética , Poliovirus/patogenicidad , Camerún/epidemiología , Brotes de Enfermedades , Enterovirus/genética , Humanos , Madagascar/epidemiología , Vacunación Masiva/estadística & datos numéricos , Mutación , Poliomielitis/prevención & control , Recombinación Genética
19.
J Infect Dis ; 205(9): 1363-73, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22457288

RESUMEN

BACKGROUND: Five cases of poliomyelitis due to type 2 or 3 recombinant vaccine-derived polioviruses (VDPVs) were reported in the Toliara province of Madagascar in 2005. METHODS: We sequenced the genome of the VDPVs isolated from the patients and from 12 healthy children and characterized phenotypic aspects, including pathogenicity, in mice transgenic for the poliovirus receptor. RESULTS: We identified 6 highly complex mosaic recombinant lineages composed of sequences derived from different vaccine polioviruses and other species C human enteroviruses (HEV-Cs). Most had some recombinant genome features in common and contained nucleotide sequences closely related to certain cocirculating coxsackie A virus isolates. However, they differed in terms of their recombinant characteristics or nucleotide substitutions and phenotypic features. All VDPVs were neurovirulent in mice. CONCLUSIONS: This study confirms the genetic relationship between type 2 and 3 VDPVs, indicating that both types can be involved in a single outbreak of disease. Our results highlight the various ways in which a vaccine-derived poliovirus may become pathogenic in complex viral ecosystems, through frequent recombination events and mutations. Intertypic recombination between cocirculating HEV-Cs (including polioviruses) appears to be a common mechanism of genetic plasticity underlying transverse genetic variability.


Asunto(s)
Brotes de Enfermedades , Genoma Viral , Poliomielitis/epidemiología , Poliovirus/aislamiento & purificación , ARN Viral/genética , Animales , Niño , Enterovirus Humano C/inmunología , Enterovirus Humano C/patogenicidad , Femenino , Humanos , Madagascar/epidemiología , Masculino , Ratones , Fenotipo , Filogenia , Poliomielitis/inmunología , Poliomielitis/prevención & control , Poliovirus/genética , Poliovirus/patogenicidad , Vacunas contra Poliovirus/efectos adversos , Conformación Proteica , Recombinación Genética , Análisis de Secuencia de ADN , Vacunas Sintéticas/efectos adversos
20.
J Clin Microbiol ; 50(5): 1650-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22337981

RESUMEN

Human enteroviruses (HEV) are among the most common viruses infecting humans. Their circulation has been widely studied in most parts of the world but not in sub-Saharan Africa, where poliomyelitis remains prevalent. We report here the molecular characterization of 98 nonpoliovirus (non-PV) HEV strains isolated from 93 randomly selected cell culture-positive supernatants from stool samples collected from 1997 through 2006 from children with acute flaccid paralysis living in the Central African Republic (CAR). The isolates were typed by sequencing the VP1 coding region and sequenced further in the VP2 coding region, and phylogenetic studies were carried out. Among the 98 VP1 sequences, 3, 74, 18, and 3 were found to belong to the HEV-A, -B, -C, and -D species, respectively. Overall, 42 types were detected. In most cases, the VP2 type was correlated with that of the VP1 region. Some of the isolates belonged to lineages that also contain viruses isolated in distant countries, while others belonged to lineages containing viruses isolated only in Africa. In particular, one isolate (type EV-A71) did not fall into any of the genogroups already described, indicating the existence of a previously unknown genogroup for this type. These results illustrate the considerable diversity of HEV isolates from the stools of paralyzed children in the CAR. The presence of diverse HEV-C types makes recombination between poliovirus and other HEV-C species possible and could promote the emergence of recombinant vaccine-derived polioviruses similar to those that have been implicated in repeated poliomyelitis outbreaks in several developing countries.


Asunto(s)
Infecciones por Enterovirus/epidemiología , Enterovirus/clasificación , Enterovirus/aislamiento & purificación , Variación Genética , Parálisis/epidemiología , ARN Viral/genética , República Centroafricana/epidemiología , Infecciones por Enterovirus/virología , Heces/virología , Genotipo , Humanos , Datos de Secuencia Molecular , Parálisis/virología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA