Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancer Metastasis Rev ; 42(1): 19-35, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36681750

RESUMEN

One of the most formidable challenges in oncology and tumor biology research is to provide an accurate understanding of tumor dormancy mechanisms. Dormancy refers to the ability of tumor cells to go undetected in the body for a prolonged period, followed by "spontaneous" escape. Various models of dormancy have been postulated, including angiogenic, immune-mediated, and cellular dormancy. While the former two propose mechanisms by which tumor growth may remain static at a population level, cellular dormancy refers to molecular processes that restrict proliferation at the cell level. Senescence is a form of growth arrest, during which cells undergo distinct phenotypic, epigenetic, and metabolic changes. Senescence is also associated with the development of a robust secretome, comprised of various chemokines and cytokines that interact with the surrounding microenvironment, including other tumor cells, stromal cells, endothelial cells, and immune cells. Both tumor and non-tumor cells can undergo senescence following various stressors, many of which are present during tumorigenesis and therapy. As such, senescent cells are present within forming tumors and in residual tumors post-treatment and therefore play a major role in tumor biology. However, the contributions of senescence to dormancy are largely understudied. Here, we provide an overview of multiple processes that have been well established as being involved in tumor dormancy, and we speculate on how senescence may contribute to these mechanisms.


Asunto(s)
Células Endoteliales , Neoplasias , Humanos , Células Endoteliales/metabolismo , Neoplasias/patología , Citocinas , Senescencia Celular , Microambiente Tumoral
2.
PLoS Genet ; 14(9): e1007589, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30188888

RESUMEN

Canine malignant melanoma, a significant cause of mortality in domestic dogs, is a powerful comparative model for human melanoma, but little is known about its genetic etiology. We mapped the genomic landscape of canine melanoma through multi-platform analysis of 37 tumors (31 mucosal, 3 acral, 2 cutaneous, and 1 uveal) and 17 matching constitutional samples including long- and short-insert whole genome sequencing, RNA sequencing, array comparative genomic hybridization, single nucleotide polymorphism array, and targeted Sanger sequencing analyses. We identified novel predominantly truncating mutations in the putative tumor suppressor gene PTPRJ in 19% of cases. No BRAF mutations were detected, but activating RAS mutations (24% of cases) occurred in conserved hotspots in all cutaneous and acral and 13% of mucosal subtypes. MDM2 amplifications (24%) and TP53 mutations (19%) were mutually exclusive. Additional low-frequency recurrent alterations were observed amidst low point mutation rates, an absence of ultraviolet light mutational signatures, and an abundance of copy number and structural alterations. Mutations that modulate cell proliferation and cell cycle control were common and highlight therapeutic axes such as MEK and MDM2 inhibition. This mutational landscape resembles that seen in BRAF wild-type and sun-shielded human melanoma subtypes. Overall, these data inform biological comparisons between canine and human melanoma while suggesting actionable targets in both species.


Asunto(s)
Melanoma/genética , Melanoma/veterinaria , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/veterinaria , Animales , Ciclo Celular/genética , Proliferación Celular/genética , Hibridación Genómica Comparativa , Análisis Mutacional de ADN , Enfermedades de los Perros/genética , Perros , Femenino , Masculino , Melanoma/sangre , Melanoma/patología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal/genética , Neoplasias Cutáneas/sangre , Neoplasias Cutáneas/patología , Análisis de Matrices Tisulares
3.
Genome Res ; 27(4): 524-532, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28373299

RESUMEN

Genomic analyses of cutaneous melanoma (CM) have yielded biological and therapeutic insights, but understanding of non-ultraviolet (UV)-derived CMs remains limited. Deeper analysis of acral lentiginous melanoma (ALM), a rare sun-shielded melanoma subtype associated with worse survival than CM, is needed to delineate non-UV oncogenic mechanisms. We thus performed comprehensive genomic and transcriptomic analysis of 34 ALM patients. Unlike CM, somatic alterations were dominated by structural variation and absence of UV-derived mutation signatures. Only 38% of patients demonstrated driver BRAF/NRAS/NF1 mutations. In contrast with CM, we observed PAK1 copy gains in 15% of patients, and somatic TERT translocations, copy gains, and missense and promoter mutations, or germline events, in 41% of patients. We further show that in vitro TERT inhibition has cytotoxic effects on primary ALM cells. These findings provide insight into the role of TERT in ALM tumorigenesis and reveal preliminary evidence that TERT inhibition represents a potential therapeutic strategy in ALM.


Asunto(s)
Aberraciones Cromosómicas , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética , Telomerasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Femenino , GTP Fosfohidrolasas/genética , Genes de Neurofibromatosis 1 , Humanos , Masculino , Melanoma/patología , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/patología , Telomerasa/metabolismo , Transcriptoma , Quinasas p21 Activadas/genética
4.
Ageing Res Rev ; 81: 101732, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36100069

RESUMEN

Tumor dormancy leading to cancer relapse is still a poorly understood mechanism. Several cell states such as quiescence and diapause can explain the persistence of tumor cells in a dormant state, but the potential role of tumor cell senescence has been met with hesitance given the historical understanding of the senescent growth arrest as irreversible. However, recent evidence has suggested that senescence might contribute to dormancy and relapse, although its exact role is not fully developed. This limited understanding is largely due to the paucity of reliable study models. The current 2D cell modeling is overly simplistic and lacks the appropriate representation of the interactions between tumor cells (senescent or non-senescent) and the other cell types within the tumor microenvironment (TME), as well as with the extracellular matrix (ECM). 3D cell culture models, including 3D bioprinting techniques, offer a promising approach to better recapitulate the native cancer microenvironment and would significantly improve our understanding of cancer biology and cellular response to treatment, particularly Therapy-Induced Senescence (TIS), and its contribution to tumor dormancy and cancer recurrence. Fabricating a novel 3D bioprinted model offers excellent opportunities to investigate both the role of TIS in tumor dormancy and the utility of senolytics (drugs that selectively eliminate senescent cells) in targeting dormant cancer cells and mitigating the risk for resurgence. In this review, we discuss literature on the possible contribution of TIS in tumor dormancy, provide examples on the current 3D models of senescence, and propose a novel 3D model to investigate the ultimate role of TIS in mediating overall response to therapy.


Asunto(s)
Bioimpresión , Neoplasias , Senescencia Celular , Matriz Extracelular/metabolismo , Humanos , Neoplasias/metabolismo , Recurrencia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA