Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(3): e202314028, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38029352

RESUMEN

The caseinolytic protease is a highly conserved serine protease, crucial to prokaryotic and eukaryotic protein homeostasis, and a promising antibacterial and anticancer drug target. Herein, we describe the potent cystargolides as the first natural ß-lactone inhibitors of the proteolytic core ClpP. Based on the discovery of two clpP genes next to the cystargolide biosynthetic gene cluster in Kitasatospora cystarginea, we explored ClpP as a potential cystargolide target. We show the inhibition of Staphylococcus aureus ClpP by cystargolide A and B by different biochemical methods in vitro. Synthesis of semisynthetic derivatives and probes with improved cell penetration allowed us to confirm ClpP as a specific target in S. aureus cells and to demonstrate the anti-virulence activity of this natural product class. Crystal structures show cystargolide A covalently bound to all 14 active sites of ClpP from S. aureus, Aquifex aeolicus, and Photorhabdus laumondii, and reveal the molecular mechanism of ClpP inhibition by ß-lactones, the predominant class of ClpP inhibitors.


Asunto(s)
Dipéptidos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Dominio Catalítico , Dipéptidos/metabolismo , Virulencia , Endopeptidasa Clp/metabolismo
2.
Inorg Chem ; 58(23): 15758-15768, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31368306

RESUMEN

Terphenyltin and terphenylgermanium trihydrides were deprotonated in reaction with strong bases, such as LiMe, LDA, or KBn. In the solid state, the Li salts of the germate anion 4 and 4a exhibit a Li-Ge contact. In the Li salt of the dihydridostannate anion 6a, the Li cation is not coordinated at the tin atom instead an interaction of the Li cation with the hydride substituents was found. Evidenced by 1H-7Li-HOESY NMR spectroscopy the Li-salt of the deprotonated tin hydride 6a exhibits in toluene solution a contact between Li cation and hydride substituents, whereas in the 1H-7Li-HOESY NMR spectrum of the homologous germate salt 4a, no crosspeak between hydride and Li signals was found. The organodihydridogermate and -stannate react as nucleophiles with low-valent Group 14 electrophiles. Thus, three compounds were synthesized: Ar-Ë'-EH2-Ar (E', E = Sn, Ge; Pb, Ge; Pb, Sn; Ar = Ar', Ar*). Following an alternative synthesis Ar'SnH2PbAr* was synthesized in reaction between [(Ar*PbH)2] and [(Ar'SnH)4] generated in situ. In reaction between low-valent organotin hydride [(Ar*SnH)2] and organdihydridostannate [Ar*SnH2]- formation of distannate [Ar*2Sn2H3]- was found.

3.
Nat Commun ; 15(1): 3521, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664456

RESUMEN

Recently, a novel cyclo-heptapeptide composed of alternating D,L-amino acids and a unique thiazolidine heterocycle, called lugdunin, was discovered, which is produced by the nasal and skin commensal Staphylococcus lugdunensis. Lugdunin displays potent antimicrobial activity against a broad spectrum of Gram-positive bacteria, including challenging-to-treat methicillin-resistant Staphylococcus aureus (MRSA). Lugdunin specifically inhibits target bacteria by dissipating their membrane potential. However, the precise mode of action of this new class of fibupeptides remains largely elusive. Here, we disclose the mechanism by which lugdunin rapidly destabilizes the bacterial membrane potential using an in vitro approach. The peptide strongly partitions into lipid compositions resembling Gram-positive bacterial membranes but less in those harboring the eukaryotic membrane component cholesterol. Upon insertion, lugdunin forms hydrogen-bonded antiparallel ß-sheets by the formation of peptide nanotubes, as demonstrated by ATR-FTIR spectroscopy and molecular dynamics simulations. These hydrophilic nanotubes filled with a water wire facilitate not only the translocation of protons but also of monovalent cations as demonstrated by voltage-clamp experiments on black lipid membranes. Collectively, our results provide evidence that the natural fibupeptide lugdunin acts as a peptidic channel that is spontaneously formed by an intricate stacking mechanism, leading to the dissipation of a bacterial cell's membrane potential.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Simulación de Dinámica Molecular , Agua/química , Potenciales de la Membrana/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Antibacterianos/farmacología , Antibacterianos/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Staphylococcus lugdunensis/efectos de los fármacos , Staphylococcus lugdunensis/química , Staphylococcus lugdunensis/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Nanotubos/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología
4.
Nat Microbiol ; 9(1): 200-213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110697

RESUMEN

Antagonistic bacterial interactions often rely on antimicrobial bacteriocins, which attack only a narrow range of target bacteria. However, antimicrobials with broader activity may be advantageous. Here we identify an antimicrobial called epifadin, which is produced by nasal Staphylococcus epidermidis IVK83. It has an unprecedented architecture consisting of a non-ribosomally synthesized peptide, a polyketide component and a terminal modified amino acid moiety. Epifadin combines a wide antimicrobial target spectrum with a short life span of only a few hours. It is highly unstable under in vivo-like conditions, potentially as a means to limit collateral damage of bacterial mutualists. However, Staphylococcus aureus is eliminated by epifadin-producing S. epidermidis during co-cultivation in vitro and in vivo, indicating that epifadin-producing commensals could help prevent nasal S. aureus carriage. These insights into a microbiome-derived, previously unknown antimicrobial compound class suggest that limiting the half-life of an antimicrobial may help to balance its beneficial and detrimental activities.


Asunto(s)
Antiinfecciosos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Péptidos Antimicrobianos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA