RESUMEN
Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.
Asunto(s)
Cromatina , Reparación del ADN , Animales , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mamíferos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMEN
The single chirality of biological molecules is a signature of life. Yet, rationalizing how single chirality emerged remains a challenging goal1. Research has commonly focused on initial symmetry breaking and subsequent enantioenrichment of monomer building blocks-sugars and amino acids-that compose the genetic polymers RNA and DNA as well as peptides. If these building blocks are only partially enantioenriched, however, stalling of chain growth may occur, whimsically termed in the case of nucleic acids as "the problem of original syn"2. Here, in studying a new prebiotically plausible route to proteinogenic peptides3-5, we discovered that the reaction favours heterochiral ligation (that is, the ligation of L monomers with D monomers). Although this finding seems problematic for the prebiotic emergence of homochiral L-peptides, we demonstrate, paradoxically, that this heterochiral preference provides a mechanism for enantioenrichment in homochiral chains. Symmetry breaking, chiral amplification and chirality transfer processes occur for all reactants and products in multicomponent competitive reactions even when only one of the molecules in the complex mixture exhibits an imbalance in enantiomer concentrations (non-racemic). Solubility considerations rationalize further chemical purification and enhanced chiral amplification. Experimental data and kinetic modelling support this prebiotically plausible mechanism for the emergence of homochiral biological polymers.
Asunto(s)
Biopolímeros , Evolución Química , Péptidos , Proteínas , Estereoisomerismo , Biopolímeros/química , Ácidos Nucleicos/síntesis química , Ácidos Nucleicos/química , Origen de la Vida , Péptidos/química , Proteínas/síntesis química , Proteínas/química , SolubilidadRESUMEN
Disruption of susceptibility (S) genes in crops is an attractive breeding strategy for conferring disease resistance1,2. However, S genes are implicated in many essential biological functions and deletion of these genes typically results in undesired pleiotropic effects1. Loss-of-function mutations in one such S gene, Mildew resistance locus O (MLO), confers durable and broad-spectrum resistance to powdery mildew in various plant species2,3. However, mlo-associated resistance is also accompanied by growth penalties and yield losses3,4, thereby limiting its widespread use in agriculture. Here we describe Tamlo-R32, a mutant with a 304-kilobase pair targeted deletion in the MLO-B1 locus of wheat that retains crop growth and yields while conferring robust powdery mildew resistance. We show that this deletion results in an altered local chromatin landscape, leading to the ectopic activation of Tonoplast monosaccharide transporter 3 (TaTMT3B), and that this activation alleviates growth and yield penalties associated with MLO disruption. Notably, the function of TMT3 is conserved in other plant species such as Arabidopsis thaliana. Moreover, precision genome editing facilitates the rapid introduction of this mlo resistance allele (Tamlo-R32) into elite wheat varieties. This work demonstrates the ability to stack genetic changes to rescue growth defects caused by recessive alleles, which is critical for developing high-yielding crop varieties with robust and durable disease resistance.
Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Edición Génica , Genoma de Planta , Triticum , Arabidopsis/genética , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Mutación , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/microbiologíaRESUMEN
DNA-protein crosslinks (DPCs) are highly toxic DNA lesions that threaten genomic integrity. Recent findings highlight that SPRTN, a specialized DNA-dependent metalloprotease, is a central player in proteolytic cleavage of DPCs. Previous studies suggest that SPRTN deubiquitination is important for its chromatin association and activation. However, the regulation and consequences of SPRTN deubiquitination remain unclear. Here we report that, in response to DPC induction, the deubiquitinase VCPIP1/VCIP135 is phosphorylated and activated by ATM/ATR. VCPIP1, in turn, deubiquitinates SPRTN and promotes its chromatin relocalization. Deubiquitination of SPRTN is required for its subsequent acetylation, which promotes SPRTN relocation to the site of chromatin damage. Furthermore, Vcpip1 knockout mice are prone to genomic instability and premature aging. We propose a model where two sequential post-translational modifications (PTMs) regulate SPRTN chromatin accessibility to repair DPCs and maintain genomic stability and a healthy lifespan.
Asunto(s)
Envejecimiento/genética , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Acetilación , Envejecimiento/metabolismo , Animales , Línea Celular , Daño del ADN , Proteínas de Unión al ADN/genética , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/metabolismo , Femenino , Inestabilidad Genómica , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional , UbiquitinaciónRESUMEN
The kinetic resolution of racemic amino acids mediated by dipeptides and pyridoxal provides a prebiotically plausible route to enantioenriched proteinogenic amino acids. The enzymatic transamination cycles that are key to modern biochemical formation of enantiopure amino acids may have evolved from this half of the reversible reaction couple. Kinetic resolution of racemic precursors emerges as a general route to enantioenrichment under prebiotic conditions.
Asunto(s)
Aminoácidos , Péptidos , Aminoácidos/química , Péptidos/químicaRESUMEN
Oxidative stress, which can be activated by a variety of environmental risk factors, has been implicated as an important pathogenic factor for inflammatory bowel disease (IBD). However, how oxidative stress drives IBD onset remains elusive. Here, we found that oxidative stress was strongly activated in inflamed tissues from both ulcerative colitis patients and Crohn's disease patients, and it caused nuclear-to-cytosolic TDP-43 transport and a reduction in the TDP-43 protein level. To investigate the function of TDP-43 in IBD, we inducibly deleted exons 2 to 3 of Tardbp (encoding Tdp-43) in mouse intestinal epithelium, which disrupted its nuclear localization and RNA-processing function. The deletion gave rise to spontaneous intestinal inflammation by inducing epithelial cell necroptosis. Suppression of the necroptotic pathway with deletion of Mlkl or the RIP1 inhibitor Nec-1 rescued colitis phenotypes. Mechanistically, disruption of nuclear TDP-43 caused excessive R-loop accumulation, which triggered DNA damage and genome instability and thereby induced PARP1 hyperactivation, leading to subsequent NAD+ depletion and ATP loss, consequently activating mitochondrion-dependent necroptosis in intestinal epithelial cells. Importantly, restoration of cellular NAD+ levels with NAD+ or NMN supplementation, as well as suppression of ALKBH7, an α-ketoglutarate dioxygenase in mitochondria, rescued TDP-43 deficiency-induced cell death and intestinal inflammation. Furthermore, TDP-43 protein levels were significantly inversely correlated with γ-H2A.X and p-MLKL levels in clinical IBD samples, suggesting the clinical relevance of TDP-43 deficiency-induced mitochondrion-dependent necroptosis. Taken together, these findings identify a unique pathogenic mechanism that links oxidative stress to intestinal inflammation and provide a potent and valid strategy for IBD intervention.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Necroptosis , Humanos , Animales , Ratones , NAD/metabolismo , Estructuras R-Loop , Enfermedades Inflamatorias del Intestino/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Inflamación/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismoRESUMEN
Monomeric flavan-3-ols and their oligomeric forms, proanthocyanidins (PAs), are closely related to the bitterness of tea beverages. Monomeric flavan-3-ols are characteristic flavor compounds in tea. Increasing the content of PAs and anthocyanins enhances the resistance of tea plants to pathogen invasion but decreases the quality of tea beverages. MATE family transporters play a critical role in transferring monomeric flavan-3-ols and anthocyanins into vacuoles for storage or subsequent condensation into PAs. Their activities modulate the ratio of monomeric flavan-3-ols to PAs and increase anthocyanin content in tea plants. In this study, it was observed that the gene expression and protein phosphorylation level of the MATE transporter CsTT12, a vacuole-localized flavonoid transporter, were notably upregulated following exogenous sucrose treatment, promoting PA synthesis in tea plants. Further analysis revealed that overexpression of CsTT12 and CsTT12S17D significantly increased the content of anthocyanins and PAs in plants, whereas CsTT12S17A did not. In CsTT12 knockdown plants, PA's accumulation decreased significantly, while monomeric catechin content increased. Moreover, phosphorylation modification enhanced the vacuolar membrane localization of CsTT12, whereas dephosphorylation weakened its vacuolar membrane localization. This study uncovers the crucial role of phosphorylation in flavonoid biosynthesis and provides insights into balancing quality improvements and resistance enhancement.
RESUMEN
Metabolic plasticity enables cancer cells to meet divergent demands for tumorigenesis, metastasis and drug resistance. Landscape analysis of tumor metabolic plasticity spanning different cancer types, in particular, metabolic crosstalk within cell subpopulations, remains scarce. Therefore, we proposed a new in-silico framework, termed as MMP3C (Modeling Metabolic Plasticity by Pathway Pairwise Comparison), to depict tumor metabolic plasticity based on transcriptome data. Next, we performed an extensive metabo-plastic analysis of over 6000 tumors comprising 13 cancer types. The metabolic plasticity within distinct cell subpopulations, particularly interplay with tumor microenvironment, were explored at single-cell resolution. Ultimately, the metabo-plastic events were screened out for multiple clinical applications via machine learning methods. The pilot research indicated that 6 out of 13 cancer types exhibited signs of the Warburg effect, implying its high reliability and robustness. Across 13 cancer types, high metabolic organized heterogeneity was found, and four metabo-plastic subtypes were determined, which link to distinct immune and metabolism patterns impacting prognosis. Moreover, MMP3C analysis of approximately 60 000 single cells of eight breast cancer patients unveiled several metabo-plastic events correlated to tumorigenesis, metastasis and immunosuppression. Notably, the metabolic features screened out by MMP3C are potential biomarkers for diagnosis, tumor classification and prognosis. MMP3C is a practical cross-platform tool to capture tumor metabolic plasticity, and our study unveiled a core set of metabo-plastic pairs among diverse cancer types, which provides bases toward improving response and overcoming resistance in cancer therapy.
Asunto(s)
Neoplasias de la Mama , Transcriptoma , Humanos , Femenino , Reproducibilidad de los Resultados , Carcinogénesis , Transformación Celular Neoplásica , Microambiente TumoralRESUMEN
ConspectusThe origin of the single chirality of the chemical building blocks of life remains an intriguing topic of research, even after decades of experimental and theoretical work proposing processes that may break symmetry and induce chiral amplification, a term that may be defined as the enhancement of enantiomeric excess starting from prochiral substrates or from a racemic mixture or a small imbalance between enantiomers. Studies aimed at understanding prebiotically plausible pathways to these molecules have often neglected the issue of chirality, with a focus on the stereochemical direction of these reactions generally being pursued after reaction discovery. Our work has explored how the stereochemical outcome for the synthesis of amino acids and sugars might be guided to rationalize the origin of biological homochirality. The mechanistic interconnection between enantioenrichment in these two groups of molecules provides insights concerning the handedness extant in modern biology. In five separate examples involving the synthesis of life's building blocks, including sugars, RNA precursors, amino acids, and peptides, kinetic resolution emerges as a key protocol for enantioenrichment from racemic molecules directed by chiral source molecules. Several of these examples involve means not only for chiral amplification but also symmetry breaking and chirality transfer across a range of racemic monomer molecules. Several important implications emerge from these studies: one, kinetic resolution of the primordial chiral sugar, glyceraldehyde, plays a key role in a number of different prebiotically plausible reactions; two, the emergence of homochirality in sugars and amino acids is inherently intertwined, with clear synergy between the biological hand of each molecule class; three, the origin story for the homochirality of enzymes and modern metabolism points toward kinetic resolution of racemic amino acids in networks that later evolved to include sophisticated and complete catalytic and co-catalytic cycles; four, a preference for heterochiral ligation forming product molecules that cannot lead to biologically competent polymers can in fact be a driving force for a route to homochiral polymer chains; and five, enantioenrichment in complex mixtures need not be addressed one compound at a time, because kinetic resolution induces symmetry breaking and chirality transfer that may lead to general protocols rather than specific cases tailored to each individual molecule. Such chirality transfer mechanisms perhaps presage strategies utilized in modern biology.Our latest work extends the study of monomer enantioenrichment to the ligation of these molecules into the extended homochiral chains leading to the complex polymers of modern biology. A central theme in all of these reactions is the key role that kinetic resolution of a racemic mixture of amino acids or sugars plays in enabling enantioenrichment under prebiotically plausible conditions. This work has uncovered important trends in symmetry breaking, chirality transfer, and chiral amplification. Kinetic resolution of racemic mixtures emerges as a general solution for chiral amplification in prebiotic chemistry, leading to the single chirality of complex biological molecules and genetic polymers.
Asunto(s)
Aminoácidos , Estereoisomerismo , Cinética , Aminoácidos/química , Péptidos/química , Péptidos/síntesis química , Prebióticos , Origen de la Vida , Azúcares/química , ARN/químicaRESUMEN
The Hippo-YAP signaling pathway plays an essential role in epithelial cells during intestinal regeneration and tumorigenesis. However, the molecular mechanism linking stromal signals to YAP-mediated intestinal regeneration and tumorigenesis is poorly defined. Here, we report a stroma-epithelium ISLR-YAP signaling axis essential for stromal cells to modulate epithelial cell growth during intestinal regeneration and tumorigenesis. Specifically, upon inflammation and in cancer, an oncogenic transcription factor ETS1 in stromal cells induces expression of a secreted protein ISLR that can inhibit Hippo signaling and activate YAP in epithelial cells. Deletion of Islr in stromal cells in mice markedly impaired intestinal regeneration and suppressed tumorigenesis in the colon. Moreover, the expression of stromal cell-specific ISLR and ETS1 significantly increased in inflamed mucosa of human IBD patients and in human colorectal adenocarcinoma, accounting for the epithelial YAP hyperactivation. Collectively, our findings provide new insights into the signaling crosstalk between stroma and epithelium during tissue regeneration and tumorigenesis.
Asunto(s)
Neoplasias Colorrectales/metabolismo , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Animales , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Células HT29 , Vía de Señalización Hippo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/metabolismo , Masculino , Ratones , Mutación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de SeñalRESUMEN
The role of transfer RNA (tRNA)-derived fragment (tRF) in various diseases has been established. However, the effect of tRF-3023b on inflammation remains unclear. Inflammation was imitated in RAW264.7 cells by adding Lipopolysaccharide (LPS). Cells were first divided into control, LPS, and LPS + Bulleyaconitine A (BLA) groups. The contents of TNF-α, IL-6, and MCP-1 were quantified using ELISA. The levels of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), and the phosphorylation of nuclear factor-kappa B (NF-κB)-P65 (p-P65) were detected by Western blotting. RNA sequencing was utilized to find differentially expressed tRFs (DE-tRFs) among three groups. The levels of various tRFs were checked by quantitative real-time PCR (qRT-PCR). Cell cycle and apoptosis were checked by flow cytometry. Dluciferase reporter assay was applied to predict and confirm the interaction between tRF-3023b and Cullin 4A (Cul4a), subsequently RNA pull-down followed by mass spectrometry analysis were conducted. BLA treatment decreased the contents of TNF-α, IL-6, MCP-1, and the expression levels of COX2, iNOS, p-P65. We found 6 DE-tRFs in LPS + BLA group compared to LPS group, tRF-3023b was high expression in control and BLA groups, and the lowest in LPS group. Cul4a was a direct target of tRF-3023b. tRF-3023b mimic affected the cell cycle distribution, promoted cells apoptosis, and suppressed the TNF-α, IL-6, MCP-1, COX2, iNOS and p-P65. The suppression of Cul4a affected the cell cycle distribution, resulted in an increase of cell apoptosis while a decrease of TNF-α, IL-6, MCP-1, COX2, iNOS and p-P65. Furthermore, Cul4a overexpression reversed the effect of tRF-3023b mimic. Cul4a knockdown reversed the effect of tRF-3023b inhibitor. Our study positions tRF-3023b as a compelling candidate, through its interaction with Cul4a, the underlying mechanism on inflammation maybe related to NF-κB pathway. The study provides a basis for exploring new therapeutic strategies for inflammation.
Asunto(s)
Proteínas Cullin , FN-kappa B , Factor de Necrosis Tumoral alfa , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/genética , Lipopolisacáridos/toxicidad , FN-kappa B/genética , ARN de Transferencia , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ratones , Células RAW 264.7 , Proteínas Cullin/genética , Proteínas Cullin/metabolismoRESUMEN
BACKGROUND: The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS: Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS: The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.
Asunto(s)
Loranthaceae , Filogenia , Loranthaceae/genética , Loranthaceae/fisiología , Evolución Biológica , Plastidios/genética , Evolución MolecularRESUMEN
BACKGROUND: Forests are essential for maintaining species diversity, stabilizing local and global climate, and providing ecosystem services. Exploring the impact of paleogeographic events and climate change on the genetic structure and distribution dynamics of forest keystone species could help predict responses to future climate change. In this study, we combined an ensemble species distribution model (eSDM) and multilocus phylogeography to investigate the spatial genetic patterns and distribution change of Quercus glauca Thunb, a keystone of East Asian subtropical evergreen broad-leaved forest. RESULTS: A total of 781 samples were collected from 77 populations, largely covering the natural distribution of Q. glauca. The eSDM showed that the suitable habitat experienced a significant expansion after the last glacial maximum (LGM) but will recede in the future under a general climate warming scenario. The distribution centroid will migrate toward the northeast as the climate warms. Using nuclear SSR data, two distinct lineages split between east and west were detected. Within-group genetic differentiation was higher in the West than in the East. Based on the identified 58 haplotypes, no clear phylogeographic structure was found. Populations in the Nanling Mountains, Wuyi Mountains, and the southwest region were found to have high genetic diversity. CONCLUSIONS: A significant negative correlation between habitat stability and heterozygosity might be explained by the mixing of different lineages in the expansion region after LGM and/or hybridization between Q. glauca and closely related species. The Nanling Mountains may be important for organisms as a dispersal corridor in the west-east direction and as a refugium during the glacial period. This study provided new insights into spatial genetic patterns and distribution dynamics of Q. glauca.
Asunto(s)
Ecosistema , Quercus , Quercus/genética , Filogeografía , Bosques , Cambio ClimáticoRESUMEN
A robust and stable phylogenetic framework is a fundamental goal of evolutionary biology. As the third largest insect order in the world following Coleoptera and Diptera, Lepidoptera (butterflies and moths) play a central role in almost every terrestrial ecosystem as indicators of environmental change and serve as important models for biologists exploring questions related to ecology and evolutionary biology. However, for such a charismatic insect group, the higher-level phylogenetic relationships among its superfamilies are still poorly resolved. Compared to earlier phylogenomic studies, we increased taxon sampling among Lepidoptera (37 superfamilies and 68 families containing 263 taxa) and acquired a series of large amino-acid datasets from 69,680 to 400,330 for phylogenomic reconstructions. Using these datasets, we explored the effect of different taxon sampling with significant increases in the number of included genes on tree topology by considering a series of systematic errors using maximum-likelihood (ML) and Bayesian inference (BI) methods. Moreover, we also tested the effectiveness in topology robustness among the three ML-based models. The results showed that taxon sampling is an important determinant in tree robustness of accurate lepidopteran phylogenetic estimation. Long-branch attraction (LBA) caused by site-wise heterogeneity is a significant source of bias giving rise to unstable positions of ditrysian groups in phylogenomic reconstruction. Phylogenetic inference showed the most comprehensive framework to reveal the relationships among lepidopteran superfamilies, and presented some newly relationships with strong supports (Papilionoidea was sister to Gelechioidea and Immoidea was sister to Galacticoidea, respectively), but limited by taxon sampling, the relationships within the species-rich and relatively rapid radiation Ditrysia and especially Apoditrysia remain poorly resolved, which need to increase taxon sampling for further phylogenomic reconstruction. The present study demonstrates that taxon sampling is an important determinant for an accurate lepidopteran tree of life and provides some essential insights for future lepidopteran phylogenomic studies.
Asunto(s)
Teorema de Bayes , Mariposas Diurnas , Mariposas Nocturnas , Filogenia , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/clasificación , Funciones de Verosimilitud , Mariposas Diurnas/genética , Mariposas Diurnas/clasificación , Modelos GenéticosRESUMEN
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Asunto(s)
Acné Vulgar , Piel , Humanos , Acné Vulgar/genética , Acné Vulgar/patología , Acné Vulgar/metabolismo , Piel/patología , Piel/metabolismo , Transducción de Señal/genética , Masculino , Macrófagos/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Subunidad alfa1 del Receptor de Interleucina-13/genética , Subunidad alfa1 del Receptor de Interleucina-13/metabolismo , FemeninoRESUMEN
Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.
Asunto(s)
Auranofina , Neoplasias Colorrectales , Humanos , Animales , Ratones , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Colorrectales/patología , Autofagia , Transición Epitelial-Mesenquimal , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión GénicaRESUMEN
BACKGROUND: Programmed cell death receptor 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are important immune checkpoint molecules that contribute to tumor immune evasion. However, the main treatment modalities for patients with early and intermediate stage colorectal cancer (CRC) are surgery, and the role of PD-1/PD-L1 inhibitors in these patients is not yet clear. Therefore, this study aims to review the treatment progress of PD-1/PD-L1 inhibitors for early- and intermediate-stage microsatellite high-instability (MSI-H) and stable (MSS) colorectal cancer, in order to provide more options for patients with early- and intermediate-stage colorectal cancer. MATERIALS AND METHODS: A scoping review of clinical trial registries ( Clinicaltrials.gov and EU clinical trial registers) and PubMed/Medline database of trials on PD-1/PD-L1 Inhibitors for early and middle-stage MSI-H and MSS CRC was done up to March 2024. RESULTS: A total of 19 trials related to early to mid-stage MSH-I or MSS CRC were included. Among them, 6 trials are in recruiting status, 3 trials are in active, not recruiting status, 3 trials are completed, 1 trial is terminated, and 1 trial is unknown. Of these, 9 trials involve MSI-H type CRC, and 10 trials involve MSS type CRC. Preclinical phase I/II trials are predominant, with only 3 clinical phase III trials. In trials related to MSI-H type CRC, 4 studies involve PD-1/PD-L1 inhibitors combined with neoadjuvant therapy, and 5 studies involve combination therapy. In trials related to MSS type CRC, 3 studies involve PD-1/PD-L1 inhibitors combined with targeted therapy, 2 studies involve PD-1/PD-L1 inhibitors combined with chemotherapy, 1 study involves PD-1/PD-L1 inhibitor combined immunotherapy, 1 study involves PD-1/PD-L1 inhibitors combined with bacterial therapy, and 3 studies involve PD-1/PD-L1 inhibitors combined with comprehensive therapy. As for primary outcome measures, 4 trials select pathological complete response rates, 3 trials select progression-free survival rate, 3 trials select objective response rate, 3 trials select overall survival rate, 4 trials select disease-free survival rate, 1 trial selects clinical complete response rate, and 1 trial selects percentage of participants with a dose-limiting toxicity. CONCLUSION: For early- and middle-stage MSI-H and MSS CRC, PD-1/PD-L1 inhibitors have shown some therapeutic efficacy, as evidenced by phase I/II studies. However, contemporary trial designs exhibit heterogeneity, with relatively few inclusion criteria, the use of various drug combinations and regimens, and significant variations in reported endpoints. Nevertheless, more double-arm, multicenter, randomized controlled trials are still needed to confirm the efficacy of immunotherapy.
Asunto(s)
Antígeno B7-H1 , Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Inestabilidad de Microsatélites , Estadificación de Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/uso terapéuticoRESUMEN
BACKGROUND AND AIM: Fexuprazan is a novel potassium-competitive acid blocker (P-CAB). This study aimed to explore the noninferior efficacy and safety of fexuprazan to esomeprazole in treating erosive esophagitis (EE). METHODS: This was a phase III, randomized, double-blind multicenter study. Patients with endoscopically confirmed EE were randomized to receive fexuprazan 40 mg or esomeprazole 40 mg once a daily for 4-8 weeks. The healing rates of EE, symptom response, GERD-health-related quality life (GERD-HRQL), and treatment-emergent adverse events (TEAEs) were compared between fexuprazan group and esomeprazole group. RESULTS: A total of 332 subjects were included in full analysis set (FAS) and 311 in per-protocol set (PPS). The healing rates of fexuprazan and esomeprazole groups at 8 weeks were 88.5% (146/165) and 89.0% (145/163), respectively, in FAS and 97.3% (145/149) and 97.9% (143/146), respectively, in PPS. Noninferiority of fexuprazan compared with esomeprazole according to EE healing rates at 8 weeks was demonstrated in both FAS and PPS analysis. No significant difference was found between groups in EE healing rates at 4 weeks, symptom responses, and changes of GERD-HRQL. The incidence of drug-related AEs was 19.4% (32/165) in fexuprazan arm and 19.6% (32/163) in esomeprazole arm. CONCLUSION: This study demonstrated noninferior efficacy of fexuprazan to esomeprazole in treating EE. The incidence of TEAEs was similar between fexuprazan and esomeprazole. Trial registration number NCT05813561.
Asunto(s)
Aminas , Esofagitis Péptica , Reflujo Gastroesofágico , Úlcera Péptica , Pirroles , Humanos , Método Doble Ciego , Esomeprazol/efectos adversos , Esofagitis Péptica/tratamiento farmacológico , Esofagitis Péptica/etiología , Reflujo Gastroesofágico/tratamiento farmacológico , Reflujo Gastroesofágico/complicaciones , Úlcera Péptica/complicaciones , Inhibidores de la Bomba de Protones/efectos adversos , Resultado del TratamientoRESUMEN
The AMP-activated protein kinase (AMPK) is the master regulator of metabolic homeostasis by sensing cellular energy status. When intracellular ATP levels decrease during energy stress, AMPK is initially activated through AMP or ADP binding and phosphorylation of a threonine residue (Thr-172) within the activation loop of its kinase domain. Here we report a key molecular mechanism by which AMPK activation is amplified under energy stress. We found that ubiquitination on AMPKα blocks AMPKα phosphorylation by LKB1. The deubiquitinase USP10 specifically removes ubiquitination on AMPKα to facilitate AMPKα phosphorylation by LKB1. Under energy stress, USP10 activity in turn is enhanced through AMPK-mediated phosphorylation of Ser76 of USP10. Thus, USP10 and AMPK form a key feedforward loop ensuring amplification of AMPK activation in response to fluctuation of cellular energy status. Disruption of this feedforward loop leads to improper AMPK activation and multiple metabolic defects.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Animales , Metabolismo Energético , Activación Enzimática , Células HCT116 , Células HEK293 , Humanos , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , UbiquitinaciónRESUMEN
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder marked by the degeneration of motor neurons and progressive muscle weakness. Heredity plays an important part in the pathogenesis of ALS. Recently, with the emergence of the oligogenic pathogenic mechanism in ALS and the ongoing discovery of new mutated genes and genomic variants, there is an emerging need for larger-scale and more comprehensive genetic screenings in higher resolution. In this study, we performed whole-genome sequencing (WGS) on 34 familial ALS probands lacking the most common disease-causing mutations to explore the genetic landscape of Chinese ALS patients further. Among them, we identified a novel ARPP21 c.1231G > A (p.Glu411Lys) variant and two copy number variations (CNVs) affecting the PFN1 and RBCK1 genes in a patient with ALS-frontotemporal dementia (FTD). This marks the first report of an ARPP21 variant in Chinese ALS-FTD patients, providing fresh evidence for the association between ARPP21 and ALS. Our findings also underscore the potential role of CNVs in ALS-FTD, suggesting that the cumulative effect of multiple rare variants may contribute to disease onset. Furthermore, compared to the averages in our cohort and the reported Chinese ALS population, this patient displayed a shorter survival time and more rapid disease progression, suggesting the possibility of an oligogenic mechanism in disease pathogenesis. Further research will contribute to a deeper understanding of the rare mutations and their interactions, thus advancing our understanding of the genetic mechanisms underlying ALS and ALS-FTD.