Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 18378, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110101

RESUMEN

Connexin36 (Cx36) is the most abundant connexin in central nervous system neurons. It forms gap junction channels that act as electrical synapses. Similar to chemical synapses, Cx36-containing gap junctions undergo activity-dependent plasticity and complex regulation. Cx36 gap junctions represent multimolecular complexes and contain cytoskeletal, regulatory and scaffolding proteins, which regulate channel conductance, assembly and turnover. The amino acid sequence of mammalian Cx36 harbors a phosphorylation site for the Ca2+/calmodulin-dependent kinase II at serine 315. This regulatory site is homologous to the serine 298 in perch Cx35 and in close vicinity to a PDZ binding domain at the very C-terminal end of the protein. We hypothesized that this phosphorylation site may serve as a molecular switch, influencing the affinity of the PDZ binding domain for its binding partners. Protein microarray and pulldown experiments revealed that this is indeed the case: phosphorylation of serine 298 decreased the binding affinity for MUPP1, a known scaffolding partner of connexin36, and increased the binding affinity for two different 14-3-3 proteins. Although we did not find the same effect in cell culture experiments, our data suggest that phosphorylation of serine 315/298 may serve to recruit different proteins to connexin36/35-containing gap junctions in an activity-dependent manner.


Asunto(s)
Proteínas 14-3-3/metabolismo , Conexinas/metabolismo , Dominios PDZ , Animales , Conexinas/química , Sinapsis Eléctricas/metabolismo , Uniones Comunicantes/metabolismo , Células HeLa , Humanos , Fosforilación , Unión Proteica , Proteína delta-6 de Union Comunicante
2.
PLoS One ; 11(3): e0147819, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26953791

RESUMEN

Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism.


Asunto(s)
Migración Animal , Aves/metabolismo , Columbidae/metabolismo , Criptocromos/metabolismo , Fenómenos de Retorno al Lugar Habitual , Campos Magnéticos , Retina/metabolismo , Animales , Especificidad de Anticuerpos/inmunología , Ganglios/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA