Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Foot Ankle Surg ; 62(1): 107-114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35732561

RESUMEN

The optimal treatment strategy after syndesmotic injuries is still controversial. In our study, we aimed to evaluate ideal fixation method in syndesmotic injury by using finite element analysis method. A 3D SolidWorks model file was created by taking computed tomography (CT) images of the area from the right foot base to the knee joint level of a healthy adult male. The intact model, injury model, and 8 different fixation models were created that 3.5 mm screw and suture-button were used in. The models were compared in terms of lateral fibular translation, posterior fibular translation and external rotation of fibula compared to tibia and stress values occurred on screws and suture-buttons. In the hybrid-1 model, lateral fibular translation and external fibular rotation values were obtained as close to the intact model. Von Mises stresses occurred in the screw (435.7 MPa) and suture-button (424.7 MPa) that used in hybrid-1 model was more than single screw at 4 cm model (316.8 MPa) and single suture-button at 2 cm model (160.7 MPa). In the Hybrid-1 model, the screw compensates for posterior fibular translation and external fibular rotation, while the suture-button compensates for lateral fibular translation. Also, the effect of the distal suture-button preventing diastasis in case of proximal screw failure, it was concluded that the hybrid-1 model can be used as a good treatment alternative in the surgical treatment of distal tibiofibular syndesmotic injuries.


Asunto(s)
Traumatismos del Tobillo , Articulación del Tobillo , Adulto , Humanos , Masculino , Articulación del Tobillo/diagnóstico por imagen , Articulación del Tobillo/cirugía , Análisis de Elementos Finitos , Cadáver , Peroné/cirugía , Traumatismos del Tobillo/diagnóstico por imagen , Traumatismos del Tobillo/cirugía , Fijación Interna de Fracturas
2.
Artículo en Inglés | MEDLINE | ID: mdl-37728074

RESUMEN

Whether the lateral ankle ligaments contribute to syndesmotic stability is still controversial and has been the subject of frequent research recently. In our study, we tried to elucidate this situation using the finite element analysis method. Intact model and thirteen different injury models were created to simulate injuries of the lateral ankle ligaments (ATFL, CFL, PTFL), injuries of the syndesmotic ligaments (AITFL, IOL, PITFL) and their combined injuries. The models were compared in terms of LFT, PFT and EFR. It was observed that 0.537 mm LFT, 0.626 mm PFT and 1.25° EFR occurred in the intact model (M#1), 0.539 mm LFT, 0.761 mm PFT and 2.31° EFR occurred in the isolated ATFL injury (M#2), 0.547 mm LFT, 0.791 mm PFT and 2.50° EFR occurred in the isolated AITFL injury (M#8). The LFT, PFT and EFR amounts were higher in the both M#2 and M#8 compared to the M#1. LFT, PFT and EFR amounts in M#2 and M#8 were found to be extremely close. In terms of LFT and PFT, when we compare models with (LFT: 0.650 mm, PFT: 1.104) and without (LFT: 0.457 mm, PFT: 1.150) IOL injury, it is seen that the amount of LFT increases and the amount of PFT decreases with IOL injury. We also observed that injuries to the CFL, PTFL and PITFL did not cause significant changes in fibular translations and PFT and EFR values show an almost linear correlation. Our results suggest that ATFL injury plays a crucial role in syndesmotic stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA