Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 561-565, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33503447

RESUMEN

Our nationwide network of BME women faculty collectively argue that racial funding disparity by the National Institutes of Health (NIH) remains the most insidious barrier to success of Black faculty in our profession. We thus refocus attention on this critical barrier and suggest solutions on how it can be dismantled.


Asunto(s)
Investigación Biomédica/economía , Negro o Afroamericano , Administración Financiera , Investigadores/economía , Humanos , National Institutes of Health (U.S.)/economía , Grupos Raciales , Estados Unidos
2.
Cell ; 174(3): 505-520, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053424

RESUMEN

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Asunto(s)
Mapeo Cromosómico/métodos , Trastornos del Neurodesarrollo/genética , Biología de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Neurobiología/métodos , Neuropsiquiatría
3.
Mol Pharm ; 20(2): 810-828, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36652561

RESUMEN

Calcium phosphate (CaP)-based materials have been extensively used for mineralized tissues in the craniofacial complex. Owing to their excellent biocompatibility, biodegradability, and inherent osteoconductive nature, their use as delivery systems for drugs and bioactive factors has several advantages. Of the three mineralized tissues in the craniofacial complex (bone, dentin, and enamel), only bone and dentin have some regenerative properties that can diminish due to disease and severe injuries. Therefore, targeting these regenerative tissues with CaP delivery systems carrying relevant drugs, morphogenic factors, and ions is imperative to improve tissue health in the mineralized tissue engineering field. In this review, the use of CaP-based microparticles, nanoparticles, and polymer-induced liquid precursor (PILPs) amorphous CaP nanodroplets for delivery to craniofacial bone and dentin are discussed. The use of these various form factors to obtain either a high local concentration of cargo at the macroscale and/or to deliver cargos precisely to nanoscale structures is also described. Finally, perspectives on the field using these CaP materials and next steps for the future delivery to the craniofacial complex are presented.


Asunto(s)
Biomineralización , Colágeno , Colágeno/química , Huesos , Ingeniería de Tejidos , Fosfatos de Calcio/química
4.
Am J Physiol Heart Circ Physiol ; 321(1): H149-H160, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34018852

RESUMEN

Age-related wild-type transthyretin amyloidosis (wtATTR) is characterized by systemic deposition of amyloidogenic fibrils of misfolded transthyretin (TTR) in the connective tissue of many organs. In the heart, this leads to cardiac dysfunction, which is a significant cause of age-related heart failure. The hypothesis tested is that TTR affects cardiac fibroblasts in ways that may contribute to fibrosis. When primary cardiac fibroblasts were cultured on TTR-deposited substrates, the F-actin cytoskeleton was disorganized, focal adhesion formation was decreased, and nuclear shape was flattened. Fibroblasts had faster collective and single-cell migration velocities on TTR-deposited substrates. In addition, fibroblasts cultured on microposts with TTR deposition had reduced attachment and increased proliferation above untreated. Transcriptomic and proteomic analyses of fibroblasts grown on glass covered with TTR showed significant upregulation of inflammatory genes after 48 h, indicative of progression in TTR-based diseases. Together, results suggest that TTR deposited in tissue extracellular matrix may affect the structure, function, and gene expression of cardiac fibroblasts. As therapies for wtATTR are cost-prohibitive and only slow disease progression, better understanding of cellular maladaptation may elucidate novel therapeutic targets.NEW & NOTEWORTHY Transthyretin (TTR) cardiac amyloidosis involves deposition of fibrils of misfolded TTR in the aging human heart, leading to cardiac dysfunction and heart failure. Our novel in vitro studies show that TTR fibrils alter primary cardiac fibroblast cytoskeletal and nuclear structure and focal adhesion formation. Furthermore, both fibrillar and tetrameric TTR significantly increased cellular migration velocity and caused upregulation of inflammatory genes determined by transcriptomic RNA and protein analysis. These findings may suggest new therapeutic approaches.


Asunto(s)
Neuropatías Amiloides Familiares/metabolismo , Amiloide/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Inflamación/genética , Miocardio/metabolismo , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/patología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Matriz Extracelular/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Miocardio/patología
5.
Mol Pharm ; 18(3): 1014-1025, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33541072

RESUMEN

Cancer immunity is mediated by a delicate orchestration between the innate and adaptive immune system both systemically and within the tumor microenvironment. Although several adaptive immunity molecular targets have been proven clinically efficacious, stand-alone innate immunity targeting agents have not been successful in the clinic. Here, we report a nanoparticle optimized for systemic administration that combines immune agonists for TLR9, STING, and RIG-I with a melanoma-specific peptide to induce antitumor immunity. These immune agonistic nanoparticles (iaNPs) significantly enhance the activation of antigen-presenting cells to orchestrate the development and response of melanoma-sensitized T-cells. iaNP treatment not only suppressed tumor growth in an orthotopic solid tumor model, but also significantly reduced tumor burden in a metastatic animal model. This combination biomaterial-based approach to coordinate innate and adaptive anticancer immunity provides further insights into the benefits of stimulating multiple activation pathways to promote tumor regression, while also offering an important platform to effectively and safely deliver combination immunotherapies for cancer.


Asunto(s)
Inmunidad Adaptativa/inmunología , Células Presentadoras de Antígenos/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Nanopartículas/administración & dosificación , Neoplasias/inmunología , Neoplasias/terapia , Animales , Línea Celular Tumoral , Femenino , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Microambiente Tumoral/inmunología
6.
Nanomedicine ; 34: 102365, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33571682

RESUMEN

After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Nanomedicina , Enfermedades Cardiovasculares/patología , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Humanos , Cicatrización de Heridas
7.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33250685

RESUMEN

Injectable colloids that self-assemble into three-dimensional networks are promising materials for applications in regenerative engineering, as they create open systems for cellular infiltration, interaction, and activation. However, most injectable colloids have spherical morphologies, which lack the high material-biology contact areas afforded by higher aspect ratio materials. To address this need, injectable high aspect ratio particles (HARPs) were developed that form three-dimensional networks to enhance scaffold assembly dynamics and cellular interactions. HARPs were functionalized for tunable surface charge through layer-by-layer electrostatic assembly. Positively charged Chitosan-HARPs had improved particle suspension dynamics when compared to spherical particles or negatively charged HARPs. Chit-HARPs were used to improve the suspension dynamics and viability of MIN6 cells in three-dimensional networks. When combined with negatively charged gelatin microsphere (GelMS) porogens, Chit-HARPs reduced GelMS sedimentation and increased overall network suspension, due to a combination of HARP network formation and electrostatic interactions. Lastly, HARPs were functionalized with fibroblast growth factor 2 (FGF2) to highlight their use for growth factor delivery. FGF2-HARPs increased fibroblast proliferation through a combination of 3D scaffold assembly and growth factor delivery. Taken together, these studies demonstrate the development and diverse uses of high aspect ratio particles as tunable injectable scaffolds for applications in regenerative engineering.

8.
Biomed Microdevices ; 21(2): 43, 2019 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-30955102

RESUMEN

Cells interact intimately with complex microdomains in their extracellular matrix (ECM) and maintain a delicate balance of mechanical forces through mechanosensitive cellular components. Tissue injury results in acute degradation of the ECM and disruption of cell-ECM contacts, manifesting in loss of cytoskeletal tension, leading to pathological cell transformation and the onset of disease. Recently, microscale hydrogel constructs have been developed to provide cells with microdomains to form focal adhesion binding sites, which enable restoration of cytoskeletal tension. These synthetic anchors can recapitulate the complex 3D architecture of the native ECM to provide microtopographical cues. The mechanical deformation of proteins at the cell surface can activate signaling cascades to modulate downstream gene-level transcription, making this a unique materials-based approach for reprogramming cell behavior. An overview of the mechanisms underlying these mechanosensitive interactions in fibroblasts, stem and other cell types is provided to review their effects on cellular reprogramming. Recent investigations on the fabrication, functionalization and implementation of these materials and microtopographical features for drug testing and therapeutic applications are discussed.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Microtecnología/métodos , Animales , Sistemas de Liberación de Medicamentos , Humanos , Fenotipo , Transducción de Señal
9.
Pharm Res ; 36(6): 89, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31004235

RESUMEN

PURPOSE: To develop a planar, asymmetric, micro-scale oral drug delivery vehicle by i) fabricating microdevice bodies with enteric materials, ii) efficiently and stably loading sensitive drug molecules, and iii) capping microdevices for controlled drug release. METHODS: Picoliter-volume inkjet printing was used to fabricate microdevices through additive manufacturing via drop-by-drop deposition of enteric polymer materials. Microdevice bodies with reservoirs are fabricated through deposition of an enteric polymer, Eudragit FS 30 D. A model API, insulin, was loaded into each microdevice and retained its stability during printing and release. Eudragit L 100 and/or S 100 were used to cap microdevices and control the kinetics of insulin release in simulated intestinal conditions. RESULTS: Microdevice morphologies and size can be tuned on the fly based on printing parameters to span from the microscale to the mesoscale. Insulin retained its stability throughout device fabrication and during in vitro release in simulated intestinal conditions. Insulin release kinetics, from burst release to no release, can be tailored by controlling the blend of the Eudragit capping material. CONCLUSION: This approach represents a uniquely scalable and flexible strategy for microdevice fabrication that overcomes limitations in loading sensitive biologics and in the tuneability of device geometries that are inherent to traditional microfabrication strategies.


Asunto(s)
Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/instrumentación , Diseño de Equipo/instrumentación , Insulinas/química , Polivinilos/química , Administración Oral , Preparaciones de Acción Retardada/administración & dosificación , Liberación de Fármacos , Excipientes/química , Insulinas/administración & dosificación , Microesferas , Tamaño de la Partícula , Impresión Tridimensional , Propiedades de Superficie
10.
J Cell Physiol ; 233(4): 3672-3683, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29034471

RESUMEN

Cell migration is regulated by several mechanotransduction pathways, which consist of sensing and converting mechanical microenvironmental cues to internal biochemical cellular signals, such as protein phosphorylation and lipid signaling. While there has been significant progress in understanding protein changes in the context of mechanotransduction, lipid signaling is more difficult to investigate. In this study, physical cues of stiffness (10, 100, 400 kPa, and glass), and microrod or micropost topography were manipulated in order to reprogram primary fibroblasts and assess the effects of lipid signaling on the actin cytoskeleton. In an in vitro wound closure assay, primary cardiac fibroblast migration velocity was significantly higher on soft polymeric substrata. Modulation of PIP2 availability through neomycin treatment nearly doubled migration velocity on 10 kPa substrata, with significant increases on all stiffnesses. The distance between focal adhesions and the lamellar membrane (using wortmannin treatment to increase PIP2 via PI3K inhibition) was significantly shortest compared to untreated fibroblasts grown on the same surface. PIP2 localized to the leading edge of migrating fibroblasts more prominently in neomycin-treated cells. The membrane-bound protein, lamellipodin, did not vary under any condition. Additionally, fifteen micron-high micropost topography, which blocks migration, concentrates PIP2 near to the post. Actin dynamics within stress fibers, measured by fluorescence recovery after photobleaching, was not significantly different with stiffness, microtopography, nor with drug treatment. PIP2-modulating drugs delivered from microrod structures also affected migration velocity. Thus, manipulation of the microenvironment and lipid signaling regulatory drugs might be beneficial in improving therapeutics geared toward wound healing.


Asunto(s)
Movimiento Celular/fisiología , Fibroblastos/metabolismo , Lípidos , Mecanotransducción Celular/fisiología , Animales , Membrana Celular/metabolismo , Adhesiones Focales/metabolismo , Proteínas de la Membrana/metabolismo , Fosforilación/fisiología , Ratas Sprague-Dawley , Transducción de Señal/fisiología
11.
Nat Methods ; 12(10): 975-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322836

RESUMEN

Reconstituting tissues from their cellular building blocks facilitates the modeling of morphogenesis, homeostasis and disease in vitro. Here we describe DNA-programmed assembly of cells (DPAC), a method to reconstitute the multicellular organization of organoid-like tissues having programmed size, shape, composition and spatial heterogeneity. DPAC uses dissociated cells that are chemically functionalized with degradable oligonucleotide 'Velcro', allowing rapid, specific and reversible cell adhesion to other surfaces coated with complementary DNA sequences. DNA-patterned substrates function as removable and adhesive templates, and layer-by-layer DNA-programmed assembly builds arrays of tissues into the third dimension above the template. DNase releases completed arrays of organoid-like microtissues from the template concomitant with full embedding in a variety of extracellular matrix (ECM) gels. DPAC positions subpopulations of cells with single-cell spatial resolution and generates cultures several centimeters long. We used DPAC to explore the impact of ECM composition, heterotypic cell-cell interactions and patterns of signaling heterogeneity on collective cell behaviors.


Asunto(s)
ADN/química , Matriz Extracelular/química , Ingeniería de Tejidos/métodos , Adhesión Celular , Comunicación Celular , Desoxirribonucleasas/metabolismo , Células Epiteliales/citología , Matriz Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Procesamiento de Imagen Asistido por Computador , Oligonucleótidos/química , Organoides/citología , Organoides/fisiología , Células del Estroma/citología
12.
J Vasc Surg ; 68(6S): 188S-200S.e4, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30064835

RESUMEN

OBJECTIVE: Inflammation is a key driver of excessive neointimal hyperplasia within vein grafts. Recent work demonstrates that specialized proresolving lipid mediators biosynthesized from omega-3 polyunsaturated fatty acids, such as resolvin D1 (RvD1), actively orchestrate the process of inflammation resolution. We investigated the effects of local perivascular delivery of RvD1 in a rabbit vein graft model. METHODS: Ipsilateral jugular veins were implanted as carotid interposition grafts through an anastomotic cuff technique in New Zealand white rabbits (3-4 kg; N = 80). RvD1 (1 µg) was delivered to the vein bypass grafts in a perivascular fashion, using either 25% Pluronic F127 gel (Sigma-Aldrich, St. Louis, Mo) or a thin bilayered poly(lactic-co-glycolic acid) (PLGA) film. No treatment (bypass only) and vehicle-loaded Pluronic gels or PLGA films served as controls. Delivery of RvD1 to venous tissue was evaluated 3 days later by liquid chromatography-tandem mass spectrometry. Total leukocyte infiltration, macrophage infiltration, and cell proliferation were evaluated by immunohistochemistry. Elastin and trichrome staining was performed on grafts harvested at 28 days after bypass to evaluate neointimal hyperplasia and vein graft remodeling. RESULTS: Perivascular treatments did not influence rates of graft thrombosis (23%), major wound complications (4%), or death (3%). Leukocyte (CD45) and macrophage (RAM11) infiltration was significantly reduced in the RvD1 treatment groups vs controls at 3 days (60%-72% reduction; P < .01). Cellular proliferation (Ki67 index) was also significantly lower in RvD1-treated vs control grafts at 3 days (40%-50% reduction; P < .01). Treatment of vein grafts with RvD1-loaded gels reduced neointimal thickness at 28 days by 61% vs bypass only (P < .001) and by 63% vs vehicle gel (P < .001). RvD1-loaded PLGA films reduced neointimal formation at 28 days by 50% vs bypass only (P < .001). RvD1 treatment was also associated with reduced collagen deposition in vein grafts at 28 days. CONCLUSIONS: Local perivascular delivery of RvD1 attenuates vein graft hyperplasia without associated toxicity in a rabbit carotid bypass model. This effect appears to be mediated by both reduced leukocyte recruitment and decreased cell proliferation within the graft. Perivascular PLGA films may also impart protection through biomechanical scaffolding in this venous arterialization model. Our studies provide further support for the potential therapeutic role of specialized proresolving lipid mediators such as D-series resolvins in modulating vascular injury and repair.


Asunto(s)
Antiinflamatorios/administración & dosificación , Implantación de Prótesis Vascular/métodos , Arteria Carótida Común/cirugía , Ácidos Docosahexaenoicos/administración & dosificación , Oclusión de Injerto Vascular/prevención & control , Venas Yugulares/efectos de los fármacos , Venas Yugulares/trasplante , Neointima , Animales , Implantación de Prótesis Vascular/efectos adversos , Proliferación Celular/efectos de los fármacos , Quimiotaxis de Leucocito/efectos de los fármacos , Modelos Animales de Enfermedad , Portadores de Fármacos , Femenino , Geles , Oclusión de Injerto Vascular/patología , Hiperplasia , Venas Yugulares/patología , Poloxámero/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Conejos , Factores de Tiempo
13.
Langmuir ; 34(21): 6125-6137, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29726688

RESUMEN

π-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer. Hydrophobic interaction chromatography, contact angle, quartz crystal microbalance, and neutron reflectivity studies were used to assess the affinity of the surfactant to the conjugated polymer surface and indicated that all surfactants were displaced by the addition of a model serum protein. In summary, CPN preparation methods which rely on surface coating of a conjugated polymer core with amphiphilic surfactants may produce systems with good yields and colloidal stability in vitro, but may be susceptible to significant surface alterations in physiological fluids.


Asunto(s)
Luminiscencia , Nanopartículas/química , Polímeros/química , Tensoactivos/química , Luz , Unión Proteica , Surfactantes Pulmonares , Propiedades de Superficie
14.
Exp Cell Res ; 355(2): 153-161, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28390677

RESUMEN

Transport of therapeutic agents across epithelial barriers is an important element in drug delivery. Transepithelial flux is widely used as a measure of transit across an epithelium, however it is most typically employed as a relative as opposed to absolute measure of molecular movement. Here, we have used the calcium switch approach to measure the maximum rate of paracellular flux through unencumbered intercellular junctions as a method to calibrate the flux rates for a series of tracers ranging in 0.6-900kDa in size across barriers composed of human colon epithelial (Caco-2) cells. We then examined the effects of nanostructured films (NSFs) on transepithelial transport. Two different NSF patterns were used, Defined Nanostructure (DN) 2 imprinted on polypropylene (PP) and DN3 imprinted on polyether ether ketone (PEEK). NSFs made direct contact with cells and decreased their barrier function, as measured by transepithelial resistance (TER), however cell viability was not affected. When NSF-induced transepithelial transport of Fab fragment (55kDa) and IgG (160kDa) was measured, it was unexpectedly found to be significantly greater than the maximum paracellular rate as predicted using cells cultured in low calcium. These data suggested that NSFs stimulate an active transport pathway, most likely transcytosis, in addition to increasing paracellular flux. Transport of IgG via transcytosis was confirmed by immunofluorescence confocal microscopy, since NSFs induced a significant level of IgG endocytosis by Caco-2 cells. Thus, NSF-induced IgG flux was attributable to both transcytosis and the paracellular route. These data provide the first demonstration that transcytosis can be stimulated by NSFs and that this was concurrent with increased paracellular permeability. Moreover, NSFs with distinct architecture paired with specific substrates have the potential to provide an effective means to regulate transepithelial transport in order to optimize drug delivery.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Nanoestructuras/química , Transcitosis/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Propiedades de Superficie
15.
Proc Natl Acad Sci U S A ; 112(7): 2287-92, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25633040

RESUMEN

Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.


Asunto(s)
Comunicación Celular , Glándulas Mamarias Humanas/citología , Células Epiteliales/citología , Matriz Extracelular , Humanos
16.
J Vasc Surg ; 65(1): 207-217.e3, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27034112

RESUMEN

OBJECTIVE: Lipid mediators derived from omega-3 polyunsaturated fatty acids such as resolvin D1 (RvD1) accelerate the resolution of inflammation and have potential as vascular therapeutics. The objective of this study was to evaluate local perivascular delivery of RvD1 as a means to attenuate neointimal hyperplasia in a rat model of arterial injury. METHODS: Smooth muscle cells were harvested from rat aortas to study the effects of RvD1 on rat arterial vascular smooth muscle cell responses in vitro, with focus on inflammation, proliferation, migration, cytoskeletal changes, and cytotoxicity. The safety and efficacy of perivascular delivery of RvD1 through thin biodegradable three-layered poly(lactic-co-glycolic acid) wraps or 25% Pluronic F127 gels were studied in a rat model of carotid angioplasty. A total of 200 ng of RvD1 was loaded into each construct for perivascular delivery after injury. Morphometric and histologic analyses were performed 3 and 14 days after injury. RESULTS: RvD1 attenuated rat arterial vascular smooth muscle cell inflammatory pathways, proliferation, migration, and mitogen-induced cytoskeletal changes in vitro, without evidence of cytotoxicity. RvD1-loaded wraps reduced neointimal formation after carotid angioplasty by 59% vs no-wrap controls (P = .001) and by 45% vs vehicle-wrap controls (P = .002). RvD1-loaded Pluronic gels similarly reduced neointimal formation by 49% vs no-gel controls (P = .02) and by 52% vs vehicle-gel controls (P = .02). No group was associated with infection, thrombosis, or negative vessel remodeling. Wraps were found to be easier to apply than gel constructs. Ki67 proliferation index was significantly lower in RvD1-loaded wrap-treated arteries compared with both no-wrap and vehicle-wrap controls at both 3 and 14 days after injury (65% vs no-wrap group and 70% vs vehicle-wrap group at day 3, 49% vs both control groups at day 14; P < .05). Similarly, oxidative stress (30% and 29%; P < .05) and nuclear factor κB activation (42% and 45%; P < .05) were significantly lower in the RvD1-loaded wrap group compared with both no-wrap and vehicle-wrap controls at 3 days after injury. CONCLUSIONS: Local perivascular delivery of RvD1 attenuates formation of neointimal hyperplasia without associated toxicity in a rat model of carotid angioplasty. This effect is likely due to attenuation of inflammatory pathways as well as decreased arterial smooth muscle cell proliferation and migration.


Asunto(s)
Fármacos Cardiovasculares/administración & dosificación , Enfermedades de las Arterias Carótidas/tratamiento farmacológico , Ácidos Docosahexaenoicos/administración & dosificación , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Neointima , Angioplastia de Balón/efectos adversos , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Fármacos Cardiovasculares/química , Enfermedades de las Arterias Carótidas/etiología , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/química , Portadores de Fármacos , Composición de Medicamentos , Hiperplasia , Mediadores de Inflamación/metabolismo , Antígeno Ki-67/metabolismo , Ácido Láctico/química , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Estrés Oxidativo/efectos de los fármacos , Poloxámero/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Factores de Tiempo , Factor de Transcripción ReIA/metabolismo
17.
Pharm Res ; 33(7): 1649-56, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26975357

RESUMEN

PURPOSE: The effectiveness of Tenofovir based HIV pre-exposure prophylaxis (PrEP) is proven, but hinges on correct and consistent use. User compliance and therapeutic effectiveness can be improved by long acting drug delivery systems. Here we describe a thin-film polymer device (TFPD) as a biodegradable subcutaneous implant for PrEP. METHODS: A thin-film polycaprolactone (PCL) membrane controls drug release from a reservoir. To achieve membrane controlled release, TAF requires a formulation excipient such as PEG300 to increase the dissolution rate and reservoir solubility. Short-term In vitro release studies are used to develop an empirical design model, which is applied to the production of in vitro prototype devices demonstrating up to 90-days of linear release and TAF chemical stability. RESULTS: The size and shape of the TFPD are tunable, achieving release rates ranging from 0.5 to 4.4 mg/day in devices no larger than a contraceptive implant. Based on published data for oral TAF, subcutaneous constant-rate release for HIV PrEP is estimated at <2.8 mg/day. Prototype devices demonstrated linear release at 1.2 mg/day for up to 90 days and at 2.2 mg/day for up to 60 days. CONCLUSIONS: We present a biodegradable TFPD for subcutaneous delivery of TAF for HIV PrEP. The size, shape and release rate of the device are tunable over a >8-fold range.


Asunto(s)
Adenina/análogos & derivados , Plásticos Biodegradables/química , Fumaratos/química , VIH-1/efectos de los fármacos , Polímeros/química , Adenina/química , Adenina/farmacología , Alanina , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Química Farmacéutica/métodos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/fisiología , Tamaño de la Partícula , Poliésteres/química , Profilaxis Pre-Exposición/métodos , Solubilidad , Tenofovir/análogos & derivados
18.
Mol Ther ; 23(1): 119-29, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25138755

RESUMEN

Intracerebral cell transplantation is being pursued as a treatment for many neurological diseases, and effective cell delivery is critical for clinical success. To facilitate intracerebral cell transplantation at the scale and complexity of the human brain, we developed a platform technology that enables radially branched deployment (RBD) of cells to multiple target locations at variable radial distances and depths along the initial brain penetration tract with real-time interventional magnetic resonance image (iMRI) guidance. iMRI-guided RBD functioned as an "add-on" to standard neurosurgical and imaging workflows, and procedures were performed in a commonly available clinical MRI scanner. Multiple deposits of super paramagnetic iron oxide beads were safely delivered to the striatum of live swine, and distribution to the entire putamen was achieved via a single cannula insertion in human cadaveric heads. Human embryonic stem cell-derived dopaminergic neurons were biocompatible with the iMRI-guided RBD platform and successfully delivered with iMRI guidance into the swine striatum. Thus, iMRI-guided RBD overcomes some of the technical limitations inherent to the use of straight cannulas and standard stereotactic targeting. This platform technology could have a major impact on the clinical translation of a wide range of cell therapeutics for the treatment of many neurological diseases.


Asunto(s)
Trasplante de Células , Imagen por Resonancia Magnética Intervencional/métodos , Técnicas Estereotáxicas/instrumentación , Animales , Cadáver , Cateterismo , Cuerpo Estriado/cirugía , Femenino , Humanos , Imagen por Resonancia Magnética Intervencional/instrumentación , Putamen/cirugía , Porcinos
19.
Nano Lett ; 15(4): 2434-41, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25790174

RESUMEN

Transdermal delivery of therapeutics is restricted by narrow limitations on size and hydrophobicity. Nanotopography has been shown to significantly enhance high molecular weight paracellular transport in vitro. Herein, we demonstrate for the first time that nanotopography applied to microneedles significantly enhances transdermal delivery of etanercept, a 150 kD therapeutic, in both rats and rabbits. We further show that this effect is mediated by remodeling of the tight junction proteins initiated via integrin binding to the nanotopography, followed by phosphorylation of myosin light chain (MLC) and activation of the actomyosin complex, which in turn increase paracellular permeability.


Asunto(s)
Etanercept/administración & dosificación , Etanercept/farmacocinética , Integrinas/metabolismo , Microinyecciones/instrumentación , Agujas , Absorción Cutánea/fisiología , Administración Cutánea , Células CACO-2 , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Ensayo de Materiales , Peso Molecular , Nanotecnología/instrumentación , Nanotecnología/métodos , Propiedades de Superficie
20.
Nano Lett ; 15(3): 1540-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25639724

RESUMEN

Herein, we present a novel approach for the fabrication of micropatterned polymeric nanowire arrays that addresses the current need for scalable and customizable polymer nanofabrication. We describe two variations of this approach for the patterning of nanowire arrays on either flat polymeric films or discrete polymeric microstructures and go on to investigate biological applications for the resulting polymeric features. We demonstrate that the micropatterned arrays of densely packed nanowires facilitate rapid, low-waste drug and reagent localization with micron-scale resolution as a result of their high wettability. We also show that micropatterned nanowire arrays provide hierarchical cellular control by simultaneously directing cell shape on the micron scale and influencing focal adhesion formation on the nanoscale. This nanofabrication approach has potential applications in scaffold-based cellular control, biological assay miniaturization, and biomedical microdevice technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA