Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 295(5): 1225-1239, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31819007

RESUMEN

Glycan biosynthesis relies on nucleotide sugars (NSs), abundant metabolites that serve as monosaccharide donors for glycosyltransferases. In vivo, signal-dependent fluctuations in NS levels are required to maintain normal cell physiology and are dysregulated in disease. However, how mammalian cells regulate NS levels and pathway flux remains largely uncharacterized. To address this knowledge gap, here we examined UDP-galactose 4'-epimerase (GALE), which interconverts two pairs of essential NSs. Using immunoblotting, flow cytometry, and LC-MS-based glycolipid and glycan profiling, we found that CRISPR/Cas9-mediated GALE deletion in human cells triggers major imbalances in NSs and dramatic changes in glycolipids and glycoproteins, including a subset of integrins and the cell-surface death receptor FS-7-associated surface antigen. In particular, we observed substantial decreases in total sialic acid, galactose, and GalNAc levels in glycans. These changes also directly impacted cell signaling, as GALE-/- cells exhibited FS-7-associated surface antigen ligand-induced apoptosis. Our results reveal a role of GALE-mediated NS regulation in death receptor signaling and may have implications for the molecular etiology of illnesses characterized by NS imbalances, including galactosemia and metabolic syndrome.


Asunto(s)
Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Azúcares/metabolismo , UDPglucosa 4-Epimerasa/química , UDPglucosa 4-Epimerasa/metabolismo , Receptor fas/metabolismo , Apoptosis/genética , Cromatografía Liquida , Desoxiazúcares/metabolismo , Técnicas de Inactivación de Genes , Glucolípidos/biosíntesis , Glucolípidos/química , Glicoproteínas/biosíntesis , Glicoproteínas/química , Glicosilación , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Receptores de Superficie Celular/metabolismo , UDPglucosa 4-Epimerasa/genética , Receptor fas/química
2.
Eur J Hum Genet ; 28(6): 706-714, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32080367

RESUMEN

Intellectual disability (ID) is a neurodevelopmental condition that affects ~1% of the world population. In total 5-10% of ID cases are due to variants in genes located on the X chromosome. Recently, variants in OGT have been shown to co-segregate with X-linked intellectual disability (XLID) in multiple families. OGT encodes O-GlcNAc transferase (OGT), an essential enzyme that catalyses O-linked glycosylation with ß-N-acetylglucosamine (O-GlcNAc) on serine/threonine residues of thousands of nuclear and cytosolic proteins. In this review, we compile the work from the last few years that clearly delineates a new syndromic form of ID, which we propose to classify as a novel Congenital Disorder of Glycosylation (OGT-CDG). We discuss potential hypotheses for the underpinning molecular mechanism(s) that provide impetus for future research studies geared towards informed interventions.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , N-Acetilglucosaminiltransferasas/genética , Animales , Trastornos Congénitos de Glicosilación/patología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Discapacidad Intelectual/patología , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Mutación Puntual , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA