Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NPJ Syst Biol Appl ; 10(1): 18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360881

RESUMEN

A major challenge in precision oncology is to detect targetable cancer vulnerabilities in individual patients. Modeling high-throughput omics data in biological networks allows identifying key molecules and processes of tumorigenesis. Traditionally, network inference methods rely on many samples to contain sufficient information for learning, resulting in aggregate networks. However, to implement patient-tailored approaches in precision oncology, we need to interpret omics data at the level of individual patients. Several single-sample network inference methods have been developed that infer biological networks for an individual sample from bulk RNA-seq data. However, only a limited comparison of these methods has been made and many methods rely on 'normal tissue' samples as reference, which are not always available. Here, we conducted an evaluation of the single-sample network inference methods SSN, LIONESS, SWEET, iENA, CSN and SSPGI using transcriptomic profiles of lung and brain cancer cell lines from the CCLE database. The methods constructed functional gene networks with distinct network characteristics. Hub gene analyses revealed different degrees of subtype-specificity across methods. Single-sample networks were able to distinguish between tumor subtypes, as exemplified by node strength clustering, enrichment of known subtype-specific driver genes among hubs and differential node strength. We also showed that single-sample networks correlated better to other omics data from the same cell line as compared to aggregate networks. We conclude that single-sample network inference methods can reflect sample-specific biology when 'normal tissue' samples are absent and we point out peculiarities of each method.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Algoritmos , Medicina de Precisión , Redes Reguladoras de Genes/genética , Transcriptoma
2.
iScience ; 27(1): 108096, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38222111

RESUMEN

Studies defining normal and disrupted human neural crest cell development have been challenging given its early timing and intricacy of development. Consequently, insight into the early disruptive events causing a neural crest related disease such as pediatric cancer neuroblastoma is limited. To overcome this problem, we developed an in vitro differentiation model to recapitulate the normal in vivo developmental process of the sympathoadrenal lineage which gives rise to neuroblastoma. We used human in vitro pluripotent stem cells and single-cell RNA sequencing to recapitulate the molecular events during sympathoadrenal development. We provide a detailed map of dynamically regulated transcriptomes during sympathoblast formation and illustrate the power of this model to study early events of the development of human neuroblastoma, identifying a distinct subpopulation of cell marked by SOX2 expression in developing sympathoblast obtained from patient derived iPSC cells harboring a germline activating mutation in the anaplastic lymphoma kinase (ALK) gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA