Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Virol ; 97(2): e0163022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719238

RESUMEN

Low level HIV transcription during modern antiretroviral therapy (ART) in persons with HIV is linked to residual inflammation and associated diseases, like cardiovascular disease and cancer. The "block and lock" approach to hold HIV in a state of deep latency may help decrease residual inflammation in a person with HIV on ART and thus improve health. A camptothecin analog topotecan (TPT) was previously implicated as an inhibitor of active HIV replication. Using an in vitro primary T cell model of HIV latency, we demonstrated that (i) TPT reduces HIV transcriptional activity in latently infected cells; (ii) downregulation of HIV RNA by TPT cannot be reversed by latency reversing agents; (iii) several primary and secondary mechanism of action of TPT may be involved in control of HIV replication; (iv) regulation of HIV RNA by TPT is dependent on splicing complexity; (v) increase in proportion of unspliced HIV transcripts was facilitated by intron retention and upregulation of splicing factors, specifically SRSF6, by TPT. Although high TPT dosing (10 µM) was needed to achieve the observed effects, viability of primary CD4+ T cells was not greatly affected. Because toxicity can be observed with TPT in persons with cancer, TPT is unlikely to be used as an anti-HIV agent in clinic, but our study provides proof that camptothetin has "block and lock" activity. Other camptothetin analogs, which are less toxic than TPT, should be designed and tested as HIV "block and lock" agents. IMPORTANCE HIV survives in a state of very low activity, called latency, for long periods in persons with HIV on antiretroviral therapy. This low activity of HIV is linked to residual inflammation and associated diseases, such as heart disease and cancer. New strategies are being explored to further silence the HIV provirus and suppress residual inflammation. This study provides strong evidence that the camptothetin analog, Topotecan, can reduce residual activity of HIV in an experimental model of HIV latency. While Topotecan itself is likely not suitable for use in the clinic due to its toxicity, other camptothetin analogs should be designed and investigated as "block and lock" agents.


Asunto(s)
Infecciones por VIH , Empalme del ARN , Topotecan , Latencia del Virus , Humanos , Infecciones por VIH/tratamiento farmacológico , Fosfoproteínas , Factores de Empalme Serina-Arginina , Topotecan/farmacología , Latencia del Virus/efectos de los fármacos
2.
J Biol Chem ; 294(14): 5576-5589, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30745362

RESUMEN

Histone deacetylase (HDAC) inhibitors (HDACis) have been widely tested in clinical trials for their ability to reverse HIV latency but have yielded only limited success. One HDACi, suberoylanilide hydroxamic acid (SAHA), exhibits off-target effects on host gene expression predicted to interfere with induction of HIV transcription. Romidepsin (RMD) has higher potency and specificity for class I HDACs implicated in maintaining HIV provirus in the latent state. More robust HIV reactivation has indeed been achieved with RMD use ex vivo than with SAHA; however, reduction of viral reservoir size has not been observed in clinical trials. Therefore, using RNA-Seq, we sought to compare the effects of SAHA and RMD on gene expression in primary CD4+ T cells. Among the genes whose expression was modulated by both HDACi agents, we identified genes previously implicated in HIV latency. Two genes, SMARCB1 and PARP1, whose modulation by SAHA and RMD is predicted to inhibit HIV reactivation, were evaluated in the major maturation subsets of CD4+ T cells and were consistently either up- or down-regulated by both HDACi compounds. Our results indicate that despite having different potencies and HDAC specificities, SAHA and RMD modulate an overlapping set of genes, implicated in HIV latency regulation. Some of these genes merit exploration as additional targets to improve the therapeutic outcomes of "shock and kill" strategies. The overall complexity of HDACi-induced responses among host genes with predicted stimulatory or inhibitory effects on HIV expression likely contributes to differential HDACi potencies and dictates the outcome of HIV reactivation.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Depsipéptidos/farmacología , VIH-1/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Activación Viral/efectos de los fármacos , Vorinostat/farmacología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Poli(ADP-Ribosa) Polimerasa-1/biosíntesis , Proteína SMARCB1/biosíntesis , Transcripción Genética/efectos de los fármacos , Latencia del Virus/efectos de los fármacos
3.
J Virol ; 90(5): 2486-502, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26676780

RESUMEN

UNLABELLED: HIV-1 Vpu decreases the exposure of epitopes within the viral envelope glycoprotein (Env) on the surface of infected cells by downregulating both BST2 and CD4. To test the hypothesis that inhibiting Vpu activity would increase the exposure of these epitopes and sensitize infected cells to antibody-dependent cellular cytotoxicity (ADCC), we treated cells with the Nedd8 activation enzyme (NAE) inhibitor MLN4924, which inhibits the cullin1-based ubiquitin ligase complex coopted by Vpu to degrade cellular targets. Treatment of HeLa cells with MLN4924 or expression of a dominant negative mutant of cullin1 inhibited the Vpu-mediated downregulation of CD4 but not the downregulation of BST2. NAE inhibition also increased the surface exposure of CD4-induced epitopes within Env on HEK293 cells containing an inducible HIV genome, on infected CEM T cells, and on infected primary T cells. In contrast, the Vpu-mediated downregulation of BST2 was substantially inhibited by MLN4924 only when T cells were treated with alpha interferon (IFN-α) to induce high levels of BST2 expression. As reported previously, the absence of vpu or nef and even more so the combined absence of these two genes sensitized infected cells to ADCC. However, NAE inhibition affected ADCC minimally. Paradoxically, even in infected, IFN-treated cells in which NAE inhibition substantially rescued the surface level of BST2, the surface level of Env detected with an antibody recognizing a CD4-independent epitope (2G12) was minimally increased. Mutation of the C-terminal Vpu residue W76, which supports the ability of Vpu to stimulate virion release by displacing BST2 from assembly sites on the plasma membrane by a cullin1-independent mechanism, increased the exposure of Env detected by 2G12 on infected T cells. Thus, inhibiting the displacement function of Vpu together with its ability to degrade CD4 and BST2 may be required to sensitize infected cells to ADCC. IMPORTANCE: Pathogenic viruses encode gene products that enable evasion of host immune surveillance mechanisms. One such mechanism is antibody-dependent cellular cytotoxicity (ADCC), whereby host antibodies bind envelope glycoproteins of the virus that are inserted into the cellular membrane and direct the destruction of infected cells. Targeting pharmacologically the activity of HIV-1 Vpu, which contributes to evasion of ADCC, could potentially sensitize infected cells to this immune surveillance mechanism, an outcome that would have therapeutic implications with respect to the goal of curing HIV-1 infection. The Nedd8 activation enzyme inhibitor MLN4924 blocks the activity of the host ubiquitin ligase that Vpu coopts to direct the degradation of CD4 and BST2. We observed that while MLN4924 partially reverses the activity of Vpu and could become part of a therapeutic approach by virtue of CD4-induced epitope exposure, sufficient Vpu activity as an antagonist of BST2 persists despite this drug to allow escape from ADCC.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Epítopos/inmunología , VIH-1/inmunología , Ubiquitinas/antagonistas & inhibidores , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/virología , Humanos , Proteína NEDD8
4.
Stem Cells ; 33(4): 1213-29, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25752510

RESUMEN

We have demonstrated that human neonatal cardiosphere-derived cells (CDCs) derived from the young are more regenerative due to their robust secretome. However, it is unclear how the decompensated pediatric heart impacts the functional activity of their CDCs. Our aim was to characterize the potency of pediatric CDCs derived from normal functioning myocardium of control heart disease (CHD) patients to those generated from age-matched end stage heart failure (ESHF) patients and to determine the mechanisms involved. ESHF-derived CDCs contained a higher number of c-kit(+) , Islet-1(+) , and Sca-1(+) cells. When transplanted into an infarcted rodent model, ESHF-derived CDCs significantly demonstrated higher restoration of ventricular function, prevented adverse remodeling, and enhanced angiogenesis when compared with CHD patients. The superior functional recovery of the ESHF-derived CDCs was mediated in part by increased SDF-1α and VEGF-A secretion resulting in augmented recruitment of endogenous stem cells and proliferation of cardiomyocytes. We determined the mechanism is due to the secretome directed by the heat shock response (HSR), which is supported by three lines of evidence. First, gain of function studies demonstrated that increased HSR induced the lower functioning CHD-derived CDCs to significantly restore myocardial function. Second, loss-of function studies targeting the HSR impaired the ability of the ESHF-derived CDCs to functionally recover the injured myocardium. Finally, the native ESHF myocardium had an increased number of c-kit(+) cardiac stem cells. These findings suggest that the HSR enhances the functional activity of ESHF-derived CDCs by increasing their secretome activity, notably SDF-1α and VEGF-A.


Asunto(s)
Insuficiencia Cardíaca/patología , Respuesta al Choque Térmico/fisiología , Miocitos Cardíacos/fisiología , Células Madre/fisiología , Animales , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Masculino , Ratas
5.
Circulation ; 126(11 Suppl 1): S46-53, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22965993

RESUMEN

BACKGROUND: Human cardiac stem cells (CSCs) promote myocardial regeneration in adult ischemic myocardium. The regenerative capacity of CSCs in very young patients with nonischemic congenital heart defects has not been explored. We hypothesized that isolated neonatal-derived CSCs may have a higher regenerative ability than adult-derived CSCs and might address the structural deficiencies of congenital heart disease. METHODS AND RESULTS: Human specimens were obtained during routine cardiac surgical procedures from right atrial appendage tissue discarded from 2 age groups: neonates and adults patients. We developed a reproducible isolation method that generated cardiosphere-derived cells (CDCs), regardless of starting tissue weight or age. Neonatal-derived CDCs demonstrated increased number of cardiac progenitor cells expressing c-kit(+), flk-1, and Islet-1 by flow cytometry and immunofluorescence. When transplanted into infarcted myocardium, neonatal-derived CDCs had a significantly higher ability to preserve myocardial function, prevent adverse remodeling, and enhance blood vessel preservation and/or formation when compared with adult-derived CDCs. Last, neonatal-derived CDCs were more cardiomyogenic than adult-derived CDCs when cocultured with neonatal cardiomyocytes and displayed enhanced angiogenic function compared with adult-derived CDCs. CONCLUSIONS: Neonatal-derived CDCs have a strong regenerative ability when compared with adult-derived CDCs that may depend on angiogenic cytokines and an increase prevalence of stem cells. This has important implications in the potential use of CDCs in future clinical trials.


Asunto(s)
Apéndice Atrial/citología , Corazón/fisiología , Infarto del Miocardio/cirugía , Regeneración/fisiología , Trasplante de Células Madre , Células Madre/citología , Adulto , Células Madre Adultas/trasplante , Factores de Edad , Animales , Animales Recién Nacidos , Biomarcadores , Diferenciación Celular , Separación Celular , Técnicas de Cocultivo , Fibroblastos/trasplante , Citometría de Flujo , Humanos , Recién Nacido , Masculino , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocitos Cardíacos/fisiología , Neovascularización Fisiológica , Ratas , Trasplante Heterólogo , Ultrasonografía , Remodelación Ventricular
6.
Pathogens ; 12(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37111397

RESUMEN

Identification of a cellular biomarker of latent HIV infection will facilitate the latent reservoir detection, quantification, and targeting for elimination. Unfortunately, the latency biomarkers reported in the literature define only a fraction of the entire reservoir. The latent HIV reservoir may be established in dividing cells that subsequently return to quiescence and in resting cells. The strength of the T cell receptor (TCR) signaling at the time of infection affects characteristics of the established reservoir, such as the ability to reactivate with latency reversing agents. To better understand the cellular environments before latency establishment, we characterized transcriptomic remodeling induced by the initial HIV infection in cells with differential proliferative responses to the TCR stimulus. Cell proliferation was monitored using the viable dye carboxyfluorescein diacetate succinimidyl ester. Cells that divided many times, a few times, or remained non-dividing were subjected to single-cell RNA sequencing. A subset of identified transcriptional changes induced by HIV infection was independent of the number of cell divisions; however, responses unique to different cell subsets were also detected. Some of these early gene expression changes were consistent with reported markers of latently infected cells. We pose that the latency biomarkers may depend on the cellular proliferative state at the time of infection.

7.
Front Cell Infect Microbiol ; 13: 1286168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156317

RESUMEN

Background: The latent HIV reservoir represents the major barrier to a cure. One curative strategy is targeting diseased cells for elimination based on biomarkers that uniquely define these cells. Single-cell RNA sequencing (scRNA-seq) has enabled the identification of gene expression profiles associated with disease at the single-cell level. Because HIV provirus in many cells during latency is not entirely silent, it became possible to determine gene expression patterns in a subset of cells latently infected with HIV. Objective: The primary objective of this study was the identification of the gene expression profiles of single latently infected CD4+ T cells using scRNA-seq. Different conditions of latency establishment were considered. The identified profiles were then explored to prioritize the identified genes for future experimental validation. Methods: To facilitate gene prioritization, three approaches were used. First, we characterized and compared the gene expression profiles of HIV latency established in different environments: in cells that encountered an activation stimulus and then returned to quiescence, and in resting cells that were infected directly via cell-to-cell viral transmission from autologous activated, productively infected cells. Second, we characterized and compared the gene expression profiles of HIV latency established with viruses of different tropisms, using an isogenic pair of CXCR4- and CCR5-tropic viruses. Lastly, we used proviral expression patterns in cells from people with HIV to more accurately define the latently infected cells in vitro. Results: Our analyses demonstrated that a subset of genes is expressed differentially between latently infected and uninfected cells consistently under most conditions tested, including cells from people with HIV. Our second important observation was the presence of latency signatures, associated with variable conditions when latency was established, including cellular exposure and responsiveness to a T cell receptor stimulus and the tropism of the infecting virus. Conclusion: Common signatures, specifically genes that encode proteins localized to the cell surface, should be prioritized for further testing at the protein level as biomarkers for the ability to enrich or target latently infected cells. Cell- and tropism-dependent biomarkers may need to be considered in developing targeting strategies to ensure that all the different reservoir subsets are eliminated.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Linfocitos T CD4-Positivos/metabolismo , Activación Viral/genética , Latencia del Virus/genética , Transcriptoma , VIH-1/genética , Provirus/genética , Biomarcadores/metabolismo , Análisis de Secuencia de ARN
8.
PLoS One ; 17(7): e0271674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895672

RESUMEN

Latently infected CD4 T cells form a stable reservoir of HIV that leads to life-long viral persistence; the mechanisms involved in establishment of this latency are not well understood. Three scenarios have been proposed: 1) an activated, proliferating cell becomes infected and reverts back to a resting state; 2) an activated cell becomes infected during its return to resting; or 3) infection is established directly in a resting cell. The aim of this study was, therefore, to investigate the relationship between T cell activation and proliferation and the establishment of HIV latency. Isolated primary CD4 cells were infected at different time points before or after TCR-induced stimulation. Cell proliferation within acutely infected cultures was tracked using CFSE viable dye over 14 days; and cell subsets that underwent varying degrees of proliferation were isolated at end of culture by flow cytometric sorting. Recovered cell subpopulations were analyzed for the amount of integrated HIV DNA, and the ability to produce virus, upon a second round of cell stimulation. We show that cell cultures exposed to virus, prior to stimulus addition, contained the highest levels of integrated and replication-competent provirus after returning to quiescence; whereas, cells infected during the height of cell proliferation retained the least. Cells that did not divide or exhibited limited division, following virus exposure and stimulation contained greater amounts of integrated and inducible HIV than did cells that had divided many times. Based on these results, co-culture experiments were conducted to demonstrate that latent infection could be established directly in non-dividing cells via cell-to-cell transmission from autologous productively infected cells. Together, the findings from our studies implicate the likely importance of direct infection of sub-optimally activated T cells in establishment of latently infected reservoirs in vivo, especially in CD4 lymphocytes that surround productive viral foci within immune tissue microenvironments.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Linfocitos T CD4-Positivos , VIH-1/genética , Humanos , Latencia del Virus/fisiología , Replicación Viral
9.
Virology ; 573: 50-58, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35714458

RESUMEN

Elimination of the latent HIV cell reservoir may be possible, if the molecular identity of latently infected cells were fully elucidated. We conducted comprehensive molecular profiling, at the protein and RNA levels, of primary T cells latently infected with HIV in vitro. Isobaric labelling quantitative proteomics and RNA sequencing identified 1453 proteins and 618 genes, altered in latently infected cells compared to mock-infected controls (p < 0.05). Biomarker selection was based on results from integrated data analysis. Relative enrichment for latently infected cells was monitored using flow cytometric sorting and the HIV integrant assay. Antibodies against selected proteins, encoded by CEACAM1 and PLXNB2, enabled enrichment of latently infected cells from cell mixtures by 3-10 fold (5.8 average, p < 0.001), comparable to levels obtained with biomarkers reported previously. Individual biomarkers are likely linked to subsets of latently infected cells, and an extended antibody panel will be required to inclusively target the latent HIV reservoir.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , VIH-1/genética , Humanos , Proteómica , Transcriptoma , Activación Viral , Latencia del Virus
10.
J Immunol Methods ; 476: 112674, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629740

RESUMEN

Human primary resting CD4+ T cells are difficult to transfect while preserving viability. The present study evaluated gymnotic delivery and RNase H1-dependent gene expression knockdown mediated by antisense oligonucleotides, called GapmeRs. Exposure of primary resting CD4+ T cells to GapmeRs did not cause cell activation or affect cell viability. Gene expression knockdowns were stable at least up to 48 h after removal of GapmeRs from culture. Exposure to GapmeRs resulted in comparable levels of degradation along the entire transcript, which could be important when studying function of regulatory long non-coding RNAs. Efficiency of transcript degradation was not solely dependent on the dose of GapmeR, RNA target and its localization. When using GapmeRs, some optimization is required, and all targets have to be individually tested; however, using GapmeRs is advantageous in experiments where preservation of the resting state of the human primary CD4+ T cells and targeting nuclear RNAs are desired. In certain cases, combining GapmeR with siRNA for the same target may improve knockdown efficiency.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Técnicas de Silenciamiento del Gen , Oligonucleótidos Antisentido/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteína HMGA1a/genética , Humanos , Activación de Linfocitos/efectos de los fármacos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , ARN/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/metabolismo
11.
Cell Stress Chaperones ; 20(1): 185-201, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25300203

RESUMEN

Protein homeostatic regulators have been shown to ameliorate single, loss-of-function protein diseases but not to treat broader animal disease models that may involve cell death. Diseases often trigger protein homeostatic instability that disrupts the delicate balance of normal cellular viability. Furthermore, protein homeostatic regulators have been delivered invasively and not with simple oral administration. Here, we report the potent homeostatic abilities of celastrol to promote cell survival, decrease inflammation, and maintain cellular homeostasis in three different disease models of apoptosis and inflammation involving hepatocytes and cardiomyocytes. We show that celastrol significantly recovers the left ventricular function and myocardial remodeling following models of acute myocardial infarction and doxorubicin-induced cardiomyopathy by diminishing infarct size, apoptosis, and inflammation. Celastrol prevents acute liver dysfunction and promotes hepatocyte survival after toxic doses of thioacetamide. Finally, we show that heat shock response (HSR) is necessary and sufficient for the recovery abilities of celastrol. Our observations may have dramatic clinical implications to ameliorate entire disease processes even after cellular injury initiation by using an orally delivered HSR activator.


Asunto(s)
Apoptosis/efectos de los fármacos , Triterpenos/farmacología , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Doxorrubicina/toxicidad , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Expresión Génica/efectos de los fármacos , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Hígado/patología , Fallo Hepático/inducido químicamente , Fallo Hepático/metabolismo , Fallo Hepático/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Triterpenos Pentacíclicos , Tioacetamida/toxicidad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA