Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 312: 114826, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35305355

RESUMEN

Connecting individual datasets from different projects to each other and to decisions can help manager-researcher-administrator teams link existing information and adapt their environmental decision-making process as new information becomes available. Throughout their careers, environmental professionals often collect data on many individual projects that address similar sets of natural resource conservation problems. Consequently, the institutions, agencies, and organizations that employ these environmental professionals accumulate a large reservoir of project-specific information. However, opportunities to advance broader natural resource conservation goals are lost if individual projects and datasets are not integrated. Here we illustrate how adaptive problem mapping (APM) provides a framing and internal structure that charts relationships among pertinent information types, germane data sets, applicable concepts, and relevant decisions. In the APM process, appropriately defined problem statements and coordinated bridging questions connect data and concepts to build a network of increasingly informed and defensible decisions. Although APM can be applied to many environmental problems, we focus on examples from aquatic systems in which fish are conservation priorities. Prioritizing an initial evaluation and regular modification of the relationships among datasets and decisions using the APM process helps manager-researcher-administrator teams envision, track, and update what is known, unknown, learned, and needed. The resulting broader point of view advances strategic planning, evaluations of progress, assessments of opportunity costs, identification of options, and justifications of decision-related actions.


Asunto(s)
Peces , Organizaciones , Animales , Conservación de los Recursos Naturales/métodos
2.
Environ Monit Assess ; 188(4): 239, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27004432

RESUMEN

Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.


Asunto(s)
Monitoreo del Ambiente/métodos , Explotaciones Pesqueras/métodos , Peces/fisiología , Animales , Ecología , Ecosistema , Ambiente , Explotaciones Pesqueras/estadística & datos numéricos , Agua Dulce , Modelos Teóricos , Dinámica Poblacional
3.
J Therm Biol ; 53: 98-106, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26590461

RESUMEN

The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses.


Asunto(s)
Migración Animal , Percas/fisiología , Temperatura , Adaptación Fisiológica , Animales , Temperatura Corporal , Lagos , Estaciones del Año
4.
PLoS One ; 9(12): e114833, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506913

RESUMEN

Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.


Asunto(s)
Migración Animal , Percas , Telemetría/instrumentación , Acústica/instrumentación , Animales , Femenino , Great Lakes Region , Masculino , Percas/fisiología
5.
Sci Total Environ ; 470-471: 1313-9, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24275530

RESUMEN

We determined whole-fish total mercury (Hg) concentrations of 40 male and 40 female adult sea lampreys (Petromyzon marinus) captured in the Cheboygan River, a tributary to Lake Huron, during May 2011. In addition, bioenergetics modeling was used to explore the effects of sex-related differences in activity and resting (standard) metabolic rate (SMR) on mercury accumulation. The grand mean for Hg concentrations was 519 ng/g (standard error of the mean=46 ng/g). On average, males were 16% higher in Hg concentration than females. Bioenergetics modeling results indicated that 14% higher activity and SMR in males would account for this observed sex difference in Hg concentrations. We concluded that the higher Hg concentration in males was most likely due to higher rate of energy expenditure in males, stemming from greater activity and SMR. Our findings have implications for estimating the effects of sea lamprey populations on mercury cycling within ecosystems, as well as for the proposed opening of sea lamprey fisheries. Eventually, our results may prove useful in improving control of sea lamprey, a pest responsible for substantial damage to fisheries in lakes where it is not native.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Mercurio/metabolismo , Petromyzon/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Femenino , Great Lakes Region , Masculino , Factores Sexuales
6.
J Aquat Anim Health ; 21(4): 262-71, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20218500

RESUMEN

The natural reproduction of lake trout Salvelinus namaycush in Lake Michigan is thought to be compromised by nutritional deficiency associated with inadequate levels of thiamine (vitamin B1) in their eggs. However, mortality driven by thiamine deficiency (commonly referred to as early mortality syndrome [EMS]) is not the only significant cause of low lake trout survival at early life stages. In this study, we sought to better understand the combined effects of variable levels of thiamine and fatty acids in lake trout eggs on prehatch, posthatch, and swim-up-stage mortality. We sampled the eggs of 29 lake trout females from southwestern Lake Michigan. The concentrations of free thiamine and its vitamers (e.g., thiamine monophosphate [TMP] and thiamine pyrophosphate [TPP]) as well as fatty acid profiles were determined in sampled eggs. Fertilized eggs and embryos were monitored through the advanced swim-up stage (1,000 degree-days). Three distinct periods of mortality were identified: prehatch (0-400 degree-days), immediately posthatch (401-600 degree-days), and swim-up (601-1,000 degree-days). Stepwise multiple regression analysis revealed (1) that cis-7-hexadecenoic acid in both neutral lipids (NL) and phospholipids (PL) correlated with prehatch mortality, (2) that docosapentaenoic acid in PL and docosahexaenoic acid in NL correlated with posthatch mortality, and (3) that total lipids, TPP, and palmitoleic acid in NL, linoleic acid, and palmitic acid in PL correlated with the frequency of EMS. These results indicate the complexity of early life stage mortality in lake trout and suggest that inadequate levels of key fatty acids in eggs, along with variable thiamine content, contribute to the low survival of lake trout progeny in Lake Michigan.


Asunto(s)
Embrión no Mamífero/metabolismo , Ácidos Grasos/análisis , Óvulo/química , Tiamina/análisis , Trucha/embriología , Animales , Ácidos Grasos/metabolismo , Femenino , Great Lakes Region , Óvulo/metabolismo , Tiamina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA